Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 06010 | |
Number of page(s) | 6 | |
Section | Minisymposium: Advances in Energy Geostructures Research (organized by Fleur Loveridge and Guillermo Narsilio) | |
DOI | https://doi.org/10.1051/e3sconf/202020506010 | |
Published online | 18 November 2020 |
A novel approach to the evaluation of contact thermal resistance at soil-structure interfaces
CERIS, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
* Corresponding author: joao.figueira@tecnico.ulisboa.pt
Considering the need to reduce our dependence on unsustainable energy sources and reducing the carbon footprint associated with building climate control, shallow geothermal energy represents an attractive sustainable technology for providing renewable heating and cooling. The temperature field generated around ground-coupled heat exchangers, and thus their energy efficiency, fundamentally depends on the heat transfer mechanism and the thermal properties of the materials involved. While the thermal properties of materials that make up the system can be defined with some certainty, little is known about the impact of contact thermal resistance at the soil-structure interface. Contact thermal resistance will reduce heat exchange efficiency and increase mechanical impacts associated with temperature changes within energy geo-structures. This paper describes a laboratory test method to quantify the contact thermal resistance of soil-concrete interfaces. The methodology is first evaluated using numerical analysis, and then validated against a test using a limestone aggregate concrete and fine, silica sand at differing levels of compaction.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.