Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 06010
Number of page(s) 6
Section Minisymposium: Advances in Energy Geostructures Research (organized by Fleur Loveridge and Guillermo Narsilio)
DOI https://doi.org/10.1051/e3sconf/202020506010
Published online 18 November 2020
  1. M. Yovanovich. Thermal Interface (Joint) Conductance and Resistance. Ther. Int. Cond. and Res. http://mhtlab.uwaterloo.ca/courses_old/ece309/notes/conduction/cont.pdf (1999) [Google Scholar]
  2. R.A. Beier, M.D. Smith. Borehole thermal resistance from line-source model of in-situ tests. ASHRAE Trans., 108(2), pp. 212-219 (2002). [Google Scholar]
  3. O.J. Svec, L.E. Goodrich, J.H.L. Palmer. Heat transfer characteristics of in-ground heat exchangers. En. Res. 7, pp. 265-278 (1983). [Google Scholar]
  4. L. Wang, H. Liu, Z. Pang, X. Lv. Overall heat transfer coefficient with considering thermal contact resistance in thermal recovery wells. Int. J. of Heat and Mass Transfer 103, pp. 486-500 (2016). [CrossRef] [Google Scholar]
  5. G. Hellström, Ground Heat Storage: Thermal analysis of duct storage systems (PhD thesis, Lund University, 1991). [Google Scholar]
  6. H.R. Thomas, S.W. Rees. The thermal performance of ground floor slabs – a full scale in situ experiment. Buil. and Env. 34, pp. 139-164 (1999). [CrossRef] [Google Scholar]
  7. A.A. Al-Temeemi, D.J. Harris. The effect of earth-contact on heat transfer through a wall in Kuwait. En. & Buil. 35, pp. 399-404 (2003) [CrossRef] [Google Scholar]
  8. He Qi, Thermal Performance of the Energy Geotechnical Structures (University of Cambridge, 2015). [Google Scholar]
  9. F. Cecinato, R. Piglialepre, F. Loveridge, D. Nicholson, Numerical analysis of thermal cycling during a multi-stage energy pile thermal response test. Proc. 1st Intl. Conf. on Energy Geotechnics, Kiel, Germany, pp. 593-600 (2016). [Google Scholar]
  10. R.M. Freitas Assunção, Thermal and thermal-mechanical analysis of thermo-active pile foundations. (IST, University of Lisbon, 2014) [Google Scholar]
  11. Xian Y., Zhang P., Zhai S., Yuan P., Yang D. Experimental characterization methods for thermal contact resistance: A review. Applied Thermal Engineering 130, pp.1530–1548 (2018). [Google Scholar]
  12. C.V. Madhusudana. Accuracy in thermal contact conductance experiments - the effect of heat losses to the surroundings. Int. Comm. Heat Mass Transfer 27, no. 6, pp- 877-891 (2003). [CrossRef] [Google Scholar]
  13. J. Low, F.A. Loveridge, W. Powrie. Error analysis of the thermal cell for soil thermal conductivity measurement. Proc. of the Inst. of Civ. Eng. – Geot. Eng. 170, pp. 191-200 (2017). [CrossRef] [Google Scholar]
  14. P.J. Bourne-Webb, J.D. de Sousa Figueira, T.M. Bodas Freitas. On the resistance to heat flow across soil-structure interfaces. Energy & Buildings (2020). (to be published) [Google Scholar]
  15. BS EN 1992-1-2:2004: Design of concrete structures - Part 1-2: General rules - Structural fire design. European Standard. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.