Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 12008 | |
Number of page(s) | 5 | |
Section | Minisymposium: Low Carbon Geotechnical Engineering (organized by Alessandro Tarantino, Enrique Romero, and Alessio Ferrari) | |
DOI | https://doi.org/10.1051/e3sconf/202020512008 | |
Published online | 18 November 2020 |
The advanced p-y method for analyzing the behaviour of large-diameter monopiles supporting offshore wind turbines
1 Professor Emeritus, Ghent University, Laboratory of Geotechnics, and AGE bvba Geotechnical Consultants, Belgium
2 President, Ensoft, Inc/Lymon C. Reese and Associates, Austin, Texas USA
* Corresponding author: william.vanimpe@outlook.be
The analyses of monopile foundations have been heavily based on the p-y response curves (to represent lateral soil resistances) published by API RP 2GEO (2011) and DNV (2013), which are proven reliable and applicable for piles with smaller diameters that were normally used for jacket structures in the offshore industry. However, concerns have been raised about the validity of semi-empirical p-y criteria for large-diameter piles. Wind turbine monopiles have a significantly larger diameter and smaller length to diameter ratio than typical piles used for offshore structures. The ratio of the length to the diameter for a monopile typically is also significantly smaller than those used in the API load tests. Therefore, the response of a monopile may be more like a rigid rotation, with components of resistance mobilized at the tip and axially along the sides as it rotates. This behaviour is in contrast to long slender piles that respond to lateral loading in bending rather than rotation. The objective of this paper is to analyze the factors that may contribute to the apparent conservatism in the current design practice for large-diameter monopile foundations and to provide improved solutions on how to analyze and design the large-diameter monopiles for offshore wind turbine using the p-y method.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.