Issue |
E3S Web Conf.
Volume 206, 2020
2020 2nd International Conference on Geoscience and Environmental Chemistry (ICGEC 2020)
|
|
---|---|---|
Article Number | 03031 | |
Number of page(s) | 4 | |
Section | Geohydrology And Ocean Resources Exploration And Survey | |
DOI | https://doi.org/10.1051/e3sconf/202020603031 | |
Published online | 11 November 2020 |
The diffusion of CO2-brine storage based on stochastic partial differential equations
1 Schlool of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China
2 Schlool of Earth Sciences, Northeast Petroleum University, Daqing 163318, China
* Corresponding author: author@e-mail.org
The migration of CO2 is stochastic in heterogeneous porous media. This paper considers the CO2 diffusion with the case of steady flow in heterogeneous porous media. The partial differential equations of CO2 diffusion in random velocity field are established based on the mass conservation equations of CO2- brine two-phase flow with the change of time scale and spatial scale under the influence of heterogeneity such as permeability and porosity. The random travel process of CO2 is quantified by joint probability distributions and joint statistical moments (mean and variance), and the diffusion model of CO2 particle in random velocity field is established under the condition of non-linear and immiscibility in heterogeneous porous media. The micro mechanism of diffusion in heterogeneous porous media is revealed by numerical simulation. The general conclusion of steady state flow of CO2 diffusion in heterogeneous porous media was verified by simulating Sleipner CO2-brine storage in Norway.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.