Issue |
E3S Web Conf.
Volume 207, 2020
25th Scientific Conference on Power Engineering and Power Machines (PEPM’2020)
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 10 | |
Section | Renewable Energy and Environmental Protection | |
DOI | https://doi.org/10.1051/e3sconf/202020702004 | |
Published online | 18 November 2020 |
Model research of the energy efficiency of a cogeneration backpressure steam turbine installation
Technical University of Sofia, Department of Thermal Power Engineering and Nuclear Power Engineering, 1000, 8 Kl. Ohridski Blvd, Sofia, Bulgaria
* Corresponding author: kokhris@gmail.com
In the contemporary district heating systems (DHS) heat energy for the customers is generated by cogeneration method, which leads to the saving of primary energy resources compared to the separate production method. The most widespread technology for combined production is based on steam turbine installations with adjustable steam extraction and backpressure steam turbine. In these technologies district heating water is heated to the required temperature either in district heaters in case of steam turbine with adjustable steam extractions or in boiler-condenser in case of backpressure steam turbine installations. The temperature of the district heat water at the inlet of the CHP installation depends on the mode of operation of the DHS. The heat load, distributed to consumers, is regulated at the heat source (CHP installation) by temperature and flow rate of the district heating water, mainly following the change in climatic factors. Current study presents the development of a simulation model of existing CHP backpressure steam turbine. The object studied is a backpressure steam turbine type SST-300 CE2L/V36S. Presented are results from the validation of the simulated model with data from the design documentation. The model has been used to study the energy efficiency of a steam turbine installation based on multivariate simulation calculations. The results obtained relate the energy efficiency indicators of CHP backpressure steam turbine with the factors that characterize the mode of operation of the district heating system.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.