Issue |
E3S Web Conf.
Volume 213, 2020
2nd International Conference on Applied Chemistry and Industrial Catalysis (ACIC 2020)
|
|
---|---|---|
Article Number | 01030 | |
Number of page(s) | 4 | |
Section | Industrial Catalysis and Chemical Substance R&D and Application | |
DOI | https://doi.org/10.1051/e3sconf/202021301030 | |
Published online | 01 December 2020 |
The Synthesis of Mesoporous TS-1 and Its Performance for Oxidation of Diphenyl Sulfide and Dibenzyl Sulfide
College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, 463000, China
* Corresponding author: dingyalong@huanghuai.edu.cn; rqli@iccas.ac.cn
TS-1 zeolite has outstanding performance in the catalytic reactions with hydrogen peroxide as catalytic promoter. However, the narrow pore size (< 1.0 nm) of traditional TS-1 makes it difficult for bulky organic compounds to contact with the active sites in the pores, which seriously limits application of TS-1. Recently, the introduction of mesoporous structure into microporous TS-1 becomes a hot research topic. Meanwhile, the huge synthesis cost of TS-1 is another main reason hindering its industrial application. In this paper, mesoporous TS-1 was successfully synthesized using sodium silicate as silicon source and titanium trichloride as titanium source under the template conditions of tetrapropylammonium hydroxide (TPAOH) and cationic polymer. The mesoporous TS-1 was characterized by X-ray diffraction (XRD), N2 adsorption, scanning electric microscopy (SEM), transmitting electric microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and UV-Vis Spectrum spectra (UV-Vis). Results show that the synthesized TS-1 zeolites have good crystallinity and tetra-coordinated framework Ti atoms, and there are abundant mesoporous structures in the zeolite crystals. The results of oxidation experiments show that conversion of diphenyl sulfide and dibenzyl sulfide with mesoporous TS-1 are 97.3 % and 85.3 % respectively, while that conversion with microporous TS-1 are 75.7 % and 63.5 respectively.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.