Issue |
E3S Web Conf.
Volume 214, 2020
2020 International Conference on Energy Big Data and Low-carbon Development Management (EBLDM 2020)
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 12 | |
Section | Digital Development and Environmental Management of Energy Supply Chain | |
DOI | https://doi.org/10.1051/e3sconf/202021403003 | |
Published online | 07 December 2020 |
Research on Economic Periodicity Based on Principal Component-Weighted Distance and Clustering Analysis
Qingdao No.2 Middle School Qingdao, China
a 2648717728@qq.com
b puq2002@163.com
c 1481239253@qq.com
Based on the knowledge of economics, this paper selects 22 macroeconomic indicators that best reflect the overall economic situation of the United States. After differential, logarithmic and exponential preprocessing of the original data, this paper, based on the power spectral analysis model, adaptively identifies the periodicity of the selected economic indicators, and visualize the results. As a result, it screens out 11 indicators with obvious periodicity. In the process of solving the weighted distance based on principal component analysis, correlation test is first conducted on the selected 11 single indicators of periodicity to obtain Pearson correlation heatmap. Then, the principal components are extracted by selecting the first five principal components as the virtual indicators to represent the monthly economic situation, and calculating the weighted distance value between months for visualization. Finally, we select the results of 36 months’ smoothing for analysis, figure out the time intervals with similar economic situation, and verify the conjecture of economic periodicity.
Finally, based on K-MEAN clustering analysis, the economic conditions of 352 months are classified into 3 clusters by using the weighted distance after 36 months’ smoothing. From the visualized results, it is found that there are two complete cycles, i.e. red-yellow-blue and red-yellow-blue, which is consistent with the conclusion of principal component analysis model, and proves the existence of economic cycle again.
In conclusion, based on the above PCA weighted distance and clustering analysis, it can be concluded that the economic period is around 176 months, in favor of medium long periodicity theory.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.