Issue |
E3S Web Conf.
Volume 226, 2021
The 1st International Conference on Bioenergy and Environmentally Sustainable Agriculture Technology (ICoN BEAT 2019)
|
|
---|---|---|
Article Number | 00013 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/202122600013 | |
Published online | 05 January 2021 |
Morphological and Physiological Responses of Indigofera tinctoria L. to Light Intensity
1 Master Degree of Agronomy, Graduated School, Universitas Sebelas Maret, Surakarta 17126, Indonesia
2 Department of Agrotechnology, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta 17126, Indonesia
* Corresponding author: mariatheresia@staff.uns.ac.id
Synthetic dyes can cause health and environmental impacts. Thus, there are opportunities to develop natural dyes, one of which is produced by Indigofera tinctoria plants. This plant is from Fabaceae that has the potential to produce a natural blue color. Natural dyes are extracted from the leaves of plants that contain indigo compounds. Indigo growth and precursors are very dependent on environmental conditions, one of which is light intensity. This study aimed to study the morphological and physiological plant responses in I. tinctoria to several levels of light intensity. The research was conducted in Puron Village, Sukoharjo, Indonesia with a complete randomized block design (RCBD) one factor, namely the level of light intensity (100 %, 50 %, and 25 %) with nine replications. Light intensity affected the morphology and physiology of I. tinctoria. Plants responded to low light intensity by increasing the leaf area index, specific leaf area and plant height. Leaf area, specific leaf area and plant height were highest at 25 % intensity. However, the number of leaves and nodes got greater at full light intensity. Higher light intensity increased the chlorophyll content a, b and total, thus, higher biomass yield which was 18.86 g at the age of 8 wk.
Key words: Chlorophyll / leaf area / number of nodes / plant height / specific leaf area
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.