Issue |
E3S Web Conf.
Volume 229, 2021
The 3rd International Conference of Computer Science and Renewable Energies (ICCSRE’2020)
|
|
---|---|---|
Article Number | 01034 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/202122901034 | |
Published online | 25 January 2021 |
Segmentation of Brain Images by Optimizing Clustering of Convolution Based Features
Affiliated to Kurukshetra University, Kurukshetra Galaxy Global Group Of Institutions Ambala-Haryana, INDIA
* E-Mail: chawla.vikas1@gmail.com
Brain tumour segmentation aims to separate the various types of tumour tissues like active cells, necrotic core, and edema from normal brain tissues of substantia alba (WM), grey matter (GM), and spinal fluid (CSF). Magnetic Resonance Imaging based brain tumour segmentation studies are attracting more and more attention in recent years thanks to non-invasive imaging and good soft tissue contrast of resonance Imaging (MRI) images. With the event of just about two decades, the ingenious approaches applying computer-aided techniques for segmenting brain tumour are getting more and more mature and coming closer to routine clinical applications. the aim of this paper is to supply a comprehensive overview for MRIbased brain tumour segmentation methods. Firstly, a quick introduction to brain tumours and imaging modalities of brain tumours is given in this proposed research, convolution based optimization. These stepwise step refine the segmentation and improve the classification parameter with the assistance of particle swarmoptimization.
Key words: Magnetic Resonance Imaging / Spinal fluid / Grey Matter / Substantia alba / CNNs / DNN.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.