Open Access
Issue
E3S Web Conf.
Volume 229, 2021
The 3rd International Conference of Computer Science and Renewable Energies (ICCSRE’2020)
Article Number 01034
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202122901034
Published online 25 January 2021
  1. Bao, S., & Chung, A. C. (2018), Multi-scale structured CNN with label consistency for brain MR image segmentation. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 6(1), 113-117. [CrossRef] [Google Scholar]
  2. Rubin, D., Akkus, Z., Hoogi, A., Galimzianova, A., (2017), Deep learning for MRI brain segmentation: The state of the art and future directions. Journal of digital imaging, 30(4), 449-459. [CrossRef] [PubMed] [Google Scholar]
  3. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., & Larochelle, H. (2017). Brain tumour segmentation with deep neural networks. Medical image analysis, 35, 18-31. [CrossRef] [PubMed] [Google Scholar]
  4. kkus, Z, i, I, Sed ář, J, Kine, , Grawa, J P, & Parney, I. F. Predicting 1p19q Chromosomal Deletion of LLG Low-Grade Gliomas from Medical Resonance Images Using Deep Learning. (2016). [Google Scholar]
  5. Brosch, T., Tang, L. Y., Yoo, Y., Li, D. K., Traboulsee, A. (2016), Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE transactions on medical imaging, 35(5), 1229-1239. [CrossRef] [PubMed] [Google Scholar]
  6. Dou, Q., Chen, H., Yu, L., Zhao, L., Qin, J., Wang, D., & Heng, P. A. (2016), Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE transactions on medical imaging, 35(5), 1182-1195. [CrossRef] [PubMed] [Google Scholar]
  7. Moeskops, P., Viergever, M. A., Mendrik, A. M., de Vries S, Benders M J, & Išgum, I 6 utomatic segmentation of Magnetic Resonance brain images with a convolutional neural network. IEEE transactions on medical imaging, 35(5), 1252-1261. [CrossRef] [PubMed] [Google Scholar]
  8. Nie, D., Wang, L., Gao, Y., & Sken, D. (2016, April), Fully convolutional networks for multi-modality isointense infant brain image segmentation. In 2016, IEEE 13th The International Symposium on Biomedical Imaging (ISBI) (pp. 1342-1345). IEEE. [CrossRef] [Google Scholar]
  9. Tomas-Fernandez, X., & Warfield, S. K. (2015), (MOPS) A model of population and subject intensities with application to multiple sclerosis lesion segmentation. IEEE transactions on medical imaging, 34(6), 1349-1361. [CrossRef] [PubMed] [Google Scholar]
  10. Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., & Shen, D. (2015). Deep convolutional neural networks(DNN) for multi-modality isointense infant brain image segmentation. NeuroImage, 108, 214-224. [CrossRef] [PubMed] [Google Scholar]
  11. Wang, L., Gao, Y., Shi, F., Li, G., Gilmore, J. H., Lin, W., & Shen, D. (2015). LINKS: Learning based multi-source Integration framework for Segmentation of infant brain images. NeuroImage, 108, 160-172. [CrossRef] [PubMed] [Google Scholar]
  12. Maier, O., Schröder, C., Forkert, N. D., Martinetz, T., & Handels, H. (2015), Classifiers for ischemic stroke lesion segmentation: a comparison study. PloS one, 10(12), e0145118. [CrossRef] [Google Scholar]
  13. de Brebisson, A., & Montana, G. (2015). Deep neural networks for anatomical brain segmentation. In the proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 20-28). [Google Scholar]
  14. Weiss, N., Rueckert, D., & Rao, A. (2013, September), Multiple sclerosis lesion segmentation using dictionary learning and sparse coding. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 735-742). Springer, Berlin, Heidelberg. [Google Scholar]
  15. Senthilkumaran, N., & Rajesh, R. (2011), Brain image segmentation. International journal of wisdom based computing, 1(3), 14-18. [Google Scholar]
  16. https://tbichallenge.wordpress.com/data [Google Scholar]
  17. https://portal.fli-iam.irisa.fr/msseg-challenge/data [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.