Issue |
E3S Web Conf.
Volume 229, 2021
The 3rd International Conference of Computer Science and Renewable Energies (ICCSRE’2020)
|
|
---|---|---|
Article Number | 01062 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/e3sconf/202122901062 | |
Published online | 25 January 2021 |
Random Forest for video Text Amazigh
Laboratoire Image et Reconnaissance de Formes – Systèmes Intelligents et Communicants (IRF – SIC), Université Ibn Zohr Agadir, Maroc
In this paper; we introduce a system of automatic recognition of Video Text Amazigh based on the Random Forest. After doing some pretreatments on the video and picture, the text is segmented into lines and then into characters. In the stage of characteristics extraction, we are representing the input data into the vector of primitives. These characteristics are linked to pixels’ densities and they are extracted on binary pictures. In the classification stage, we examine four classification methods with two different classifiers types namely the convolutional neural network (CNN) and the Random Forest method. We carried out the experiments with a database containing 3300 samples collected from different writers. The experimental results show that our proposed OCR system is very efficient and provides good recognition accuracy rate of handwriting characters images acquired via Video camera phone.
Key words: Pretreatments / Video Text Amazigh / Mobile phone / OCR / CNN / Random Forest
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.