Issue |
E3S Web Conf.
Volume 231, 2021
2020 2nd International Conference on Power, Energy and Electrical Engineering (PEEE 2020)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 5 | |
Section | Power Engineering and Power Electronic Technology | |
DOI | https://doi.org/10.1051/e3sconf/202123101003 | |
Published online | 25 January 2021 |
Enhancing power loss by optimal coordinated extensive CS operation during off-peak load at the distribution system
School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Malaysia
* Corresponding author: syednorazizul@utm.my
Minimise dependency of energy from depleted non-renewable had pushed the usage of electric vehicle (EV). However, the presence of charging station (CS) may cause another impact such as higher power loss, especially involving uncoordinated CS. The impact becomes vital when the numbers of CS to charge the EV increased dramatically. From research, CS at residential usually operated during off-peak load. Furthermore, the variation of the charging pattern that difficult to perceive had added severe condition. Thus, the exploration of the mitigation method is necessary to avoid the stress at the existing distribution network. This paper suggests a coordinated method based on the power loss forecast throughout the charging time. The method will prioritise the buses based on power loss impact on the network, which later to determine the suitable numbers of CS operation. The approach considers customer satisfaction to charge the EV at a specific duration fully. Thus, to present the effectiveness of the approach, the analysis conducted using a suitable distribution system with residential block. The results show a positive outcome in enhancing distribution power loss without interrupt customer satisfaction. The method is suitable to deal with many CS that operates simultaneously during off-peak load.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.