Issue |
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
|
|
---|---|---|
Article Number | 01075 | |
Number of page(s) | 13 | |
Section | NESEE2020-New Energy Science and Environmental Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202123301075 | |
Published online | 27 January 2021 |
An Intelligent Temporary While-Boring Support Technology For Raise Boring Method
1 Mine Construction Branch, China Coal Research Institute, Beijing, 100013, China
2 Beijing China Coal Mine Engineering Co. Ltd, Beijing, 100013, China
3 National Engineering Laboratory for Deep Shaft Construction Technology in Coal Mine, Beijing, 100013, China
a Corresponding author: gf_gaofeng@foxmail.com
Ensuring the stability of the shaft structure is one of the key technologies for the application of raise boring method. In the process of reaming through rock formations with water disintegration characteristics, the impact of water gushing and drenching may induce partial collapse. To solve this problem, an intelligent temporary while-boring support technology is proposed in this paper. Firstly, the main characteristics of the technology are introduced. Utilizing the space inside the raise boring pipes, the material conveying pipes and nozzle can reach the lower part of the reamer to realize spraying support. Secondly, a composite cementitious supporting material with good mechanical properties is developed to ensure the sealing and waterproofing of the surrounding rock. Thirdly, a test study was carried out on key process parameters. The results show that the best engineering economic benefits under the condition that the rotation speed is 2r/min and the distance between the nozzle and the surrounding rock is 1m. Fourthly, an image classification algorithm based on Resnet-34 convolutional neural network is proposed, which realizes the intelligent judgment of the effect of surrounding rock support. Finally, an industrial test was carried out in Lijiahao Coal Mine. The test results show that the intelligent temporary while-boring support technology proposed in this paper has a good performance, effectively achieving the sealing and water resistance of the surrounding rock, and the shaft structure has not been damaged.
© The Authors, published by EDP Sciences 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.