Issue |
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
|
|
---|---|---|
Article Number | 01118 | |
Number of page(s) | 9 | |
Section | NESEE2020-New Energy Science and Environmental Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202123301118 | |
Published online | 27 January 2021 |
Study on Remediation of Hexachlorobenzene Contaminated Soil by Mechanochemical Method
Southeast University, School of Energy and Environment, Nanjing, 210096, Jiangsu, China
* Corresponding Author: hcchen@seu.edu.cn
The mechanochemical method is a potential way to destroy pollutants such as heavy metals and organic compounds due to its advantages such as complete reaction, adaptation of various pollutants and low energy consumption, etc. Research work was conducted to investigate the feasibility of remediating the persistent organic pollutants (POPs) contaminated soil and how the parameters influence the destruction of the pollutants. In the study, hexachlorobenzene (HCB) was used as a presentative of the POPs in soil. Natural minerals such as albite and magnetite were selected as additives to treat HCB contaminated soil with the application of mechanochemical method. The reasonable operation parameters as well as the soil properties on the destruction of HCB were determined. Analysis such as Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffractometer (XRD), X-ray Photoelectron Spectroscopy (XPS) and Raman Spectrometer were conducted for the supplement of mechanism study. A degradation rate of 92.5% for HCB was achieved under the optimal reaction condition. According to the XPS analysis results, the transformed valence state of iron, provided electrons for the destruction of HCB, on the basis of specific structure of albite. The amorphous carbon and graphite carbon were the final products of the destruction of HCB in the process of ball milling. The selected reagents with albite and magnetite would be viable for the damage of other POPs by mechanochemical method.
© The Authors, published by EDP Sciences 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.