Open Access
Issue
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
Article Number 01118
Number of page(s) 9
Section NESEE2020-New Energy Science and Environmental Engineering
DOI https://doi.org/10.1051/e3sconf/202123301118
Published online 27 January 2021
  1. S. Q. Chen, J. Li, X. Y. Huang, Y. G. Wang. Environmentally friendly flame retardants and Stockholm Convention. China International Adhesive Technology Conference 2016 (Xian), pp.729-735. [Google Scholar]
  2. T. Núñez-Rocha, I. Martínez-Zarzoso. Are international environmental policies effective? The case of the Rotterdam and the Stockholm Conventions. Econ. Model., 81 (2019), pp. 480-502. [Google Scholar]
  3. A. A. Jennings, Z. J. Li. Residential surface soil guidance applied worldwide to the pesticides added to the Stockholm Convention in 2009 and 2011, J. Environ. Manage., 160 (2015), pp. 226-240. [PubMed] [Google Scholar]
  4. L. Y. Liu, W. L. Ma, H. L. Jia, Z. F. Zhang, W. W. Song, Y. F. Li. Research on persistent organic pollutants in China on a national scale: 10 years after the enforcement of the Stockholm Convention, Environ. Pollut., 217 (2016), pp. 70-81. [Google Scholar]
  5. F. Chen, Z. B. Luo, G. J. Liu, Y. J. Yang, S. L. Zhang, J. Ma. Remediation of electronic waste polluted soil using a combination of persulfate oxidation and chemical washing, Environ. Manage., 204 (2017), pp. 170-178. [Google Scholar]
  6. Venny, S. Y. Gan, H. Kiat Ng. Current status and prospects of Fenton oxidation for the decontamination of persistent organic pollutants (POPs) in soils. Chem. Eng. J., 213 (2012), pp. 295-317. [Google Scholar]
  7. Y. R. Li, H. P. Zhao, L. Z. Zhu. Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron: A review, Sci. Total. Environ., (2020). [Google Scholar]
  8. E. Morillo, J. Villaverde. Advanced technologies for the remediation of pesticide-contaminated soils, Sci. Total. Environ., 586 (2017), pp. 576-597. [CrossRef] [PubMed] [Google Scholar]
  9. B. H. Sun, Q. Q. Li, M. H. Zheng, G. J. Su, S. J. Lin, M. G. Wu, C. Q. Li, Q. L. Wang, Y. M. Tao, L. W. Dai, Y. Qin, B. Meng. Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials: a review, Environ. Pollut., 265 (2020). [Google Scholar]
  10. V. H. Nguyen, S. W. Meejoo Smith, K. Wantala, P. Kajitvichyanukul. Photocatalytic remediation of persistent organic pollutants (POPs): A review, Arab. J. Chem, 13 (2020), pp. 8309-8337, [CrossRef] [Google Scholar]
  11. N. S. Kozhevnikova, T. I. Gorbunova, A. S. Vorokh, M. G. Pervova, A. Y. Zapevalov, V. I. Saloutin, O. N. Chupakhin. Nanocrystalline TiO2 doped by small amount of pre-synthesized colloidal CdS nanoparticles for photocatalytic degradation of 1,2,4-trichlorobenzene, Sustain. Chem. Pharm., 11 (2019), pp. 1-11. [Google Scholar]
  12. T. D. Pham, R. A. Shrestha, J. Virkutyte, M. Sillanpää. Combined ultrasonication and electrokinetic remediation for persistent organic removal from contaminated kaolin, Electrochi. Acta, 54 (2009), pp. 1403-1407. [CrossRef] [Google Scholar]
  13. A. Oonnittan, P. Isosaari, M. Sillanpää. Oxidant availability in soil and its effect on HCB removal during electrokinetic Fenton process, Sep. Purif. Technol, 76 (2010), pp.146-150. [CrossRef] [Google Scholar]
  14. X. J. Meng, K. Zhu, Y. F. Jiang, Z. R. Nan. Experimental study on electrokinetic remediation of phenol contaminated soil. J. Environ. Sci. Manage, 35 (2010), pp.70-74. [Google Scholar]
  15. S. S. Liu, Z. L. Chen, B. Liu, D. Ma, Y. X. Xu, X. C. Peng. Field demonstration of soil vapor extraction on diesel fuel contaminated site, J. Soil Water Conserv., 27 (2013), pp.172-175,181. [Google Scholar]
  16. R. J. Davis, H. M. Liljestrand, L. E. Katz. Evidence for multiple removal pathways in low-temperature (200–400 °C) thermal treatment of pentachlorophenol-laden soils, J. Hazardous. Mater., 400 (2020). [CrossRef] [Google Scholar]
  17. H. F. Liu, X. S. Meng, W. Zhao. Case study on soil remediation effect of in situ gas thermal desorption under different sampling temperatures. Energy Environ. Prot., 34 (2020), pp.51-54. [Google Scholar]
  18. F. Z. Li, Y. P. Zhang, S. Wang, G. B. Li, X. P. Yue, D. X. Zhong, C. H. Chen, K. Shen. Insight into ex-situ thermal desorption of soils contaminated with petroleum via carbon number-based fraction approach, Chem. Eng. J., 385 (2020). [Google Scholar]
  19. J. Liu, H. Zhang, Z. T. Yao, X. D. Li, J. H. Tang. Thermal desorption of PCBs contaminated soil with calcium hydroxide in a rotary kiln, Chemosphere, 220 (2019), PP.1041-1046. [PubMed] [Google Scholar]
  20. G. Anitescu, L.L. Tavlarides. Supercritical extraction of contaminants from soils and sediments, J. Supercrit. Fluids, 38 (2006), pp.167-180. [Google Scholar]
  21. R. Medina, A. J. Fernández-González, F. M. García-Rodríguez, P. J. Villadas, J. A. Rosso, M. Fernández-López, M. T. Del Panno. Exploring the effect of composting technologies on the recovery of hydrocarbon contaminated soil post chemical oxidative treatment, Appl. Soil Ecol., 150 (2020). [Google Scholar]
  22. X. Y. Ren, G. M. Zeng, L. Tang, J. J. Wang, J. Wan, J. J. Wang, Y. C. Deng, Y. N. Liu, B. Peng. The potential impact on the biodegradation of organic pollutants from composting technology for soil remediation, Waste Manage., 72 (2018), pp. 138-149. [CrossRef] [Google Scholar]
  23. S. S. Deng, S. G. Kang, N. N. Feng, J. X. Zhu, B. Yu. Mechanochemical mechanism of rapid dechlorination of Hexachlorobenzene, J. Hazard. Mater., 333 (2017), pp.116-127. [Google Scholar]
  24. Y. J. Li, Q. N. Liu, W. F. Li, Y. Z. Lu, H. Meng. Efficient destruction of hexachlorobenzene by calcium carbide through mechanochemical reaction in a planetary ball mill. Chemosphere, 166 (2017), pp.275-280. [PubMed] [Google Scholar]
  25. S. Rowlands, A. Hall, P. G. McCormick, R. Street, R. J. Hart, G. F. Ebell, P. Donecker. Destruction of toxic materials, Nature, 367 (1994), 223. [Google Scholar]
  26. Q. J. Mao, S. Y. Lu, Y. L. Wei, X. D. Li, J. H. Yan. Treatment of polychlorinated contaminated soil by horizontal ball milling. Environ. Chem., 35 (2016), pp. 607-614. [Google Scholar]
  27. G. Cagnetta, J. Robertson, J. Huang, K. L. Zhang, G. Yu. Mechanochemical destruction of halogenated organic pollutants: A critical review. J. Hazard. Mater., 313 (2016), pp.85-102. [Google Scholar]
  28. Y. Tanaka, Q Zhang, F. Saito, T. Ikoma, S. Tero-kubota. Dependence of mechanochemically induced decomposition of mono-chlorobiphenyl on the occurrence of radicals. Chemosphere, 60 (2005), pp.939-943. [PubMed] [Google Scholar]
  29. S. S. Deng, Y. X. Bao, G. Cagnetta, J. Huang, G. Yu. Mechanochemical degradation of perfluorohexane sulfonate: Synergistic effect of ferrate(VI) and zero-valent iron, Environ. Pollut., 264 (2020) [Google Scholar]
  30. W. Zhang, Y. F. Yu, J. Huang, S. B. Deng, G. Yu. Mechanochemical degradation of hexachlorobenzene by iron and quartz sand, Forum on persistent organic pollutants 2011 and the sixth national symposium on persistent organic pollutants, 2011(Heilongjiang) [Google Scholar]
  31. H. B. Li. Mechanochemical treatment of soil DDT based on calcium oxide and its mechanism. Tianjin: Tianjin University (2015), pp. 24-25, 26-28. [Google Scholar]
  32. Z. L. Chen, S. Y. Lu, Q. J. Mao, B. K. Alfons, Y. T. Wang, J. H. Yan. Energy transfer and kinetics in mechanochemistry. Environ. Sci. Pollut. Res., 24 (2017), pp.24562–24571. [CrossRef] [Google Scholar]
  33. P. Wu. Preliminary study on mechanochemical treatment of high concentration DDT contaminated soil. Tianjin: Tianjin University. (2014), pp.68-72. [Google Scholar]
  34. Y. F. Ren, S. G. Kang, J. X. Zhu. Mechanochemical degradation of hexachlorobenzene using Mg/Al2O3 as additive, J. Mater. Cycles. Waste Manag., 17 (2015), pp. 607-615. [Google Scholar]
  35. L. Y. Li, Z. J. Luo, H. Peng. Vertical distribution of petroleum pollutants in cohesive soil. Safe. Environ. Eng., 21 (2014), pp. 57-62. [Google Scholar]
  36. G. X. Fan, X. T. Liu, X. W. Li, C. Y. Lin, M. C. He, W. Ouyang. Mechanochemical treatment with CaO-activated PDS of HCB contaminated soils, Chemosphere, 257 (2020) [Google Scholar]
  37. R. J. Li, L. Q. Yang, J. Zhuang, Y. N. Shi, X. J. Chen. Effects of organic matter and aggregates on migration behavior of bisphenol A. J. Ecol., (2020) [Google Scholar]
  38. M. H. Zhu, P. Hu. Instrumental analysis. Beijing: Higher Education Press, (2008), pp.290-308. [Google Scholar]
  39. W. Zhang, H. Z. Wang, J. Huang, M. Yu, F. Wang, L. B. Zhou, G. Yu. Acceleration and mechanistic studies of the mechanochemical dechlorination of HCB with iron powder and quartz sand, Chem. Eng. J., 239 (2014), pp. 185-191. [Google Scholar]
  40. D. X. Zhao. Preparation, characterization and magnetorheological behavior of Fe3O4 particles with different morphologies. Heibei University of Engineering. (2019), pp. 32-33. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.