Issue |
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
|
|
---|---|---|
Article Number | 01124 | |
Number of page(s) | 11 | |
Section | NESEE2020-New Energy Science and Environmental Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202123301124 | |
Published online | 27 January 2021 |
Research on the application of molecular simulation technology in enhanced oil-gas recovery engineering
1 College of Petroleum Engineering, Xi’an Shiyou University. Xi’an 710065, China
2 MOE Engineering Research Center of Development & Management of Western Low & Ultra-Low Permeability Oilfield, Xi’an 710065, China
* Correspondence should be addressed to Yuanda Yuan; 792343379@qq.com*
In recent years, molecular simulations have received extensive attention in the study of reservoir fluid and rock properties, interactions, and related phenomena at the atomistic scale. For example, in molecular dynamics simulation, interesting properties are taken out of the time evolution analysis of atomic positions and velocities by numerical solution of Newtonian equations for all atomic motion in the system. These technologies assists conducting “computer experiments” that might instead of be impossible, very costly, or even extremely perilous to carry out. Whether it is from the primary oil recovery to the tertiary oil recovery or from laboratory experiment to field test, it is difficult to clarify the oil displacement flow mechanism of underground reservoirs. Computer molecular simulation reveals the seepage mechanism of a certain oil displacement at the microscopic scale, and enriches the specific oil displacement flow theory system. And the molecular design and effect prediction of a certain oil-displacing agent were studied, and its role in the reservoir was simulated, and the most suitable oil-displacing agent and the best molecular structure of the most suitable oil-displacing agent were obtained. To give a theoretical basic for the development of oilfield flooding technology and enhanced oil/gas recovery. This paper presents an overview of molecular simulation techniques and its applications to explore enhanced oil/gas recovery engineering research, which will provide useful instructions for characterizing the reservoir fluid and rock and their behaviors in various oil-gas reserves, and it greatly contribute to perform optimal operation and better design of production plants.
© The Authors, published by EDP Sciences 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.