Open Access
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
Article Number 01124
Number of page(s) 11
Section NESEE2020-New Energy Science and Environmental Engineering
Published online 27 January 2021
  1. Chen Z L, Xu W R, Tang L D. Theory and Practice of Molecular Modeling[M]. Beijing: Chemical Industry Press, 2007. [Google Scholar]
  2. Yang Xiaozhen. molecular modelling and macromolecular material[M]. Beijing: Science Press, 2002. [Google Scholar]
  3. Hou Yanbo, Ren Qiang, Dai Zhenyu, Zhou Han. Interaction mechanism between surfactant molecules and oil-water interface molecules [J]. Acta petroleum Sinica (petroleum processing), 2018,34 (01): 108-114. [Google Scholar]
  4. Hou Yanbo, Ren Qiang. Mesoscopic simulation of surfactant oil water interface [J]. Acta petrologica Sinica (petroleum processing), 2019,35 (01): 91-98. [Google Scholar]
  5. Yayun Zhang, Shuyang Gao, Xiaoyu Du, et al. Molecular dynamics simulation of strength weakening mechanism of deep shale[J]. Journal of Petroleum Science and Engineering, 2019, 181. [CrossRef] [Google Scholar]
  6. song Jinbo, Chai Yongming, Yan Chunru, Zheng duo. Mechanism of relative permeability regulator [J]. Petroleum geology and oil recovery, 2013,20 (01): 104-106 + 110 + 118. [Google Scholar]
  7. Junfang Zhang, Michael B. Clennell, Keyu Liu, David N. Dewhurst, Marina Pervukhina, Neil Sherwood. Molecular dynamics study of CO2 sorption and transport properties in coal[J]. Fuel,2016,177. [CrossRef] [Google Scholar]
  8. Geng tie, Zhao Chunhua, Liu Xuejing, Su long, Zheng Liqiang, sun Jichao. Aggregation behavior of surfactant molecules at oil / water interface: progress in molecular simulation [J]. Daily chemical industry, 2019,49 (08): 537-544. [Google Scholar]
  9. Chen M B. Computational chemistry-from theoretical chemistry to molecular simulation[M]. Beijing: Science Press, 2009. [Google Scholar]
  10. Ren Wen-po, Chen Hong-gang, Yang Chao-he, et al. Application of molecular simulation in density characterization and structure validation of heavy oil fractions[J]. CIESC Journal, 2009, 60(08): 1883-1888. [Google Scholar]
  11. Qu Huimin, Ding Zifeng, men Haiying, Wang Ning, Wang Peng, Wei Liangxia. Molecular simulation, synthesis and performance evaluation of molecular membrane injection enhancer [J]. Oilfield chemistry, 2017,34 (03): 463-468. [Google Scholar]
  12. Qu Jiali, Li Xiangyuan, Chen Jue, et al. Application of molecular simulation technology in polymer science experiments[J]. Polymer Bulletin, 2017(05): 69-72. [Google Scholar]
  13. Chu Zhang, Shangbin Chen, Yu Liu, et al. Mechanism of methane adsorption on groove space in organic matter surface[J]. Molecular Simulation,2019,45(3). [Google Scholar]
  14. Shi J, Gong L, Sun S, et al. Competitive adsorption phenomenon in shale gas displacement processes[J]. RSC Advances, 2019, 9(44): 25326-25335. [Google Scholar]
  15. Haixiang Hu, Lei Du, Yanfei Xing, Xiaochun Li. Detailed study on self- and multicomponent diffusion of CO2-CH4 gas mixture in coal by molecular simulation[J]. Fuel, 2017, 187. [Google Scholar]
  16. Huang, L., Ning, Z., Li, H., et al. Molecular Simulation of CO2 Sequestration and Enhanced Gas Recovery in Gas Rich Shale: An Insight Based on Realistic Kerogen Model[J]. Society of Petroleum Engineers, 2017. [Google Scholar]
  17. Geng Tie, Zhao Chun-hua, Liu Xue-jing, et al. Molecular simulations for aggregation behavior of surfactant molecules at oil/water interface[J]. [Google Scholar]
  18. Aimoli C G, Maginn E J, Abreu C R, et al. Force field comparison and thermodynamic property calculation of supercritical CO2 and CH4 using molecular dynamics simulations[J]. Fluid Phase Equilibria, 2014: 80-90. [Google Scholar]
  19. Qin Zhang, Feng Liang, Zhenglian Pang, et al. Lower threshold of pore-throat diameter for the shale gas reservoir: Experimental and molecular simulation study[J]. Journal of Petroleum Science and Engineering, 2019, 173. [Google Scholar]
  20. Cao bin, Gao Jinsen, Xu Chunming. The Applications of Molecular Simulation Technology in the Fields of Petroleum[J]. Progress in Chemistry, 2004(02): 291-298. [Google Scholar]
  21. June Gunn Lee. Computational Materials Science: An Introduction[M]. Boca Raton: CRC Press, 2016. [Google Scholar]
  22. He Yingjie, Yang Yang, Zhang Tingshan, et al. Molecular simulation of shale gas adsorption in graphite slit-pores [J]. Lithologic Reservoirs, 2016, 28(06): 88-94. [Google Scholar]
  23. Junfang Zhang, Michael B. Clennell, Keyu Liu, David N. Dewhurst, Marina Pervukhina, Neil Sherwood. Molecular dynamics study of CO2 sorption and transport properties in coal[J]. Fuel, 2016, 177. [CrossRef] [Google Scholar]
  24. Ungerer P, Yiannourakou M, Mavromaras A, et al. Compositional Modeling of Crude Oils Using C10– C36 Properties Generated by Molecular Simulation[J]. Energy & Fuels, 2019, 33(4): 2967-2980. [CrossRef] [Google Scholar]
  25. Ponsjimenez M, Cartasrosado R, Martinezmagadan J M, et al. Theoretical and experimental insights on the true impact of C12TAC cationic surfactant in enhanced oil recovery for heavy oil carbonate reservoirs[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 455(455): 76-91. [CrossRef] [Google Scholar]
  26. Jie Zhong, Pan Wang, Yang Zhang, et al. Adsorption mechanism of oil components on water-wet mineral surface: A molecular dynamics simulation study[J]. Energy, 2013, 59. [Google Scholar]
  27. Zhang Hongyu, Wang Yanyan, Tao Guoqiang, et al. Coarse Grained Molecular Mechanics (MM) /Molecular Dynamics (MD) Force Field for Petroleum Chemistry:I.Coarse Grained Model for Alkanes in Petroleum[J]. Acta Chimica Sinica, 2011, 69(17): 2053-2062. [Google Scholar]
  28. Sagala F, Montoya T, Hethnawi A, et al. Nanopyroxene-Based Nanofluids for Enhanced Oil Recovery in Sandstone Cores at Reservoir Temperature[J]. Energy & Fuels, 2019, 33(2): 877-890. [CrossRef] [Google Scholar]
  29. Masoud Seyyedattar, Sohrab Zendehboudi, Stephen Butt. Molecular dynamics simulations in reservoir analysis of offshore petroleum reserves: A systematic review of theory and applications[J]. Earth-Science Reviews, 2019, 192. [Google Scholar]
  30. Liu B, Shi J, Sun B, et al. Molecular dynamics simulation on volume swelling of CO2–alkane system[J]. Fuel, 2015: 194-201. [CrossRef] [Google Scholar]
  31. Makimura, D., et al. Application of molecular simulations to CO2-enhanced oil recovery: phase equilibria and interfacial phenomena[J]. SPE, 2013, 18 (2), 319-330. [CrossRef] [Google Scholar]
  32. Zhang J, Pan Z, Liu K, et al. Molecular Simulation of CO2 Solubility and Its Effect on Octane Swelling[J]. Energy & Fuels, 2013, 27(5): 2741-2747. [CrossRef] [Google Scholar]
  33. Fan Jing Cun, Wang Feng Chao, Chen Jie, et al. Molecular mechanism of viscoelastic polymer enhanced oil recovery in nanopores[J]. Royal Society open science, 2018, 5(6). [Google Scholar]
  34. Song Kaoping, Yang Erlong, Wang Jinmei, et al. Mechanism of enhancing oil displacement efficiency by polymer flooding and driving effectiveness analysis[J]. Acta Petrolei Sinica, 2004(03): 71-74. [Google Scholar]
  35. Chen P, Yao L, Liu Y, et al. Experimental and theoretical study of dilute polyacrylamide solutions: effect of salt concentration[J]. Journal of Molecular Modeling, 2012, 18(7): 3153-3160. [CrossRef] [PubMed] [Google Scholar]
  36. LI Wenzhuo, WANG Jianlong, XU Dingjia. Molecular Simulations of the Effect of Hydrated Montmorillonite on the Viscosity of Polyacrylamide under Confined Shear[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2015, 30(03): 556-561. [CrossRef] [Google Scholar]
  37. Ni T, Huang G, Gao P, et al. Molecular Simulation of Salt Ion Effect on Anionic Polyelectrolyte Chain[J]. Journal of Macromolecular Science, Part B, 2012, 51(1): 60-69. [CrossRef] [Google Scholar]
  38. Tao Ni, Guang-Su Huang, Jing Zheng, et al. Research on the crosslinking mechanism of polyacrylamide/resol using molecular simulation and X-ray photoelectron spectroscopy[J]. Polymer Journal, 2010, 42(5). [Google Scholar]
  39. Tang J, Qu Z, Luo J, et al. Molecular Dynamics Simulations of the Oil-Detachment from the Hydroxylated Silica Surface: Effects of Surfactants, Electrostatic Interactions, and Water Flows on the Water Molecular Channel Formation[J]. The journal of physical chemistry. B, 2018, 122(6). [Google Scholar]
  40. JIANG Rongjun, LUO Jianhui, BAI Ruibing, et al. Molecular Dynamics Simulation on Behavior of Common Surfactants at the Oil/Water Interface in Complex Systems[J]. Chemical Journal of Chinese Universities, 2017, 38(10): 1804-1812. [Google Scholar]
  41. Tang X, Xiao S, Lei Q, et al. Molecular Dynamics Simulation of Surfactant Flooding Driven Oil-Detachment in Nano-Silica Channels[J].J Phys Chem B. 2019, 123(1): 277-288. [CrossRef] [PubMed] [Google Scholar]
  42. Liu B, Shi J, Wang M, et al. Reduction in interfacial tension of water–oil interface by supercritical CO2 in enhanced oil recovery processes studied with molecular dynamics simulation[J]. Journal of Supercritical Fluids, 2016: 171-178. [CrossRef] [Google Scholar]
  43. Haixiang Hu, Xiaochun Li, Zhiming Fang, et al. Small-molecule gas sorption and diffusion in coal: Molecular simulation[J]. Energy, 2010, 35(7). [Google Scholar]
  44. Timing Fang, Muhan Wang, Chao Wang, et al. Oil detachment mechanism in CO2 flooding from silica surface: Molecular dynamics simulation[J]. Chemical Engineering Science, 2017, 164. [Google Scholar]
  45. Raveendran P, Ikushima Y, Wallen S L, et al. Polar Attributes of Supercritical Carbon Dioxide[J]. Accounts of Chemical Research, 2005, 38(6): 478-485. [CrossRef] [PubMed] [Google Scholar]
  46. Timing Fang, Junqin Shi, Xiaoli Sun, et al. Supercritical CO2 selective extraction inducing wettability alteration of oil reservoir[J]. The Journal of Supercritical Fluids, 2016, 113. [Google Scholar]
  47. Timing Fang, Yingnan Zhang, Rui Ma, et al. Oil extraction mechanism in CO2 flooding from rough surface: Molecular dynamics simulation[J]. Applied Surface Science, 2019, 494. [Google Scholar]
  48. Xue Q, Tao Y, Liu Z, et al. Mechanism of oil molecules transportation in nano-sized shale channel: MD simulation[J]. RSC Advances, 2015, 5(33): 25684-25692. [Google Scholar]
  49. Haixiang Hu, Lei Du, Yanfei Xing, Xiaochun Li. Detailed study on self- and multicomponent diffusion of CO2-CH4 gas mixture in coal by molecular simulation[J]. Fuel, 2017, 187. [Google Scholar]
  50. Chen M, Lu X, Liu X, et al. Molecular Dynamics Simulation of the Effects of NaCl on Electrostatic Properties of Newton Black Films[J]. Journal of Physical Chemistry C, 2012, 116(41): 21913-21922. [CrossRef] [Google Scholar]
  51. Wu G, Zhu Q, Yuan C, et al. Molecular dynamics simulation of the influence of polyacrylamide on the stability of sodium dodecyl sulfate foam[J]. Chemical Engineering Science, 2017: 313-319. [Google Scholar]
  52. WU Gang, JI Xian-jing, ZHANG Tian-tian,et al. Molecular Simulation Studies on the Interaction of Polymer and Surfactant:A Review [J]. Polymer Bulletin, 2016(08): 51-60. [Google Scholar]
  53. Cao Xulong. Mesoscopic simulation and design on dilute surfactant-polymer system[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2008, 24(06): 682-688. [Google Scholar]
  54. Ren Qiang, Wang Zhenyu, Sun Yuhai. Mechanism of binary complex surfactant in oil-water interface[J]. Petroleum Processing and Petrochemicals, 2018, 49(09): 43-48. [Google Scholar]
  55. Li Y, Guo Y, Xu G, et al. Dissipative particle dynamics simulation on the properties of the oil/water/surfactant system in the absence and presence of polymer[J]. Molecular Simulation, 2013, 39(4): 299-308. [Google Scholar]
  56. Mahdavi E, Khaledialidusti R, Barnoush A, et al. Rheological properties of super critical CO2 with Al2O3: Material type, size and temperature effect[J]. Journal of Molecular Liquids, 2019. [Google Scholar]
  57. Soleimani H, Baig M K, Yahya N, et al. Synthesis of ZnO nanoparticles for oil–water interfacial tension reduction in enhanced oil recovery[J]. Applied Physics A, 2018, 124(2). [CrossRef] [Google Scholar]
  58. Shaoxiang Liang, Timing Fang, Wei Xiong, et al. Oil detachment by modified nanoparticles: A molecular dynamics simulation study[J]. Computational Materials Science, 2019, 170. [Google Scholar]
  59. Yan Y, Li C, Dong Z, et al. Enhanced oil recovery mechanism of CO2 water-alternating-gas injection in silica nanochannel [J]. Fuel, 2017: 253-259. [CrossRef] [Google Scholar]
  60. Yang Jie, Dong Zhaoxia, Xiang Qigui, et al. The pH increase mechanism of wettability alteration on sandstone surface by low saline water[J]. Journal of Northeast Petroleum University, 2018, 42(06): 104-113+11-12. [Google Scholar]
  61. Sedghi Mohammad,Piri Mohammad, Goual Lamia. Atomistic Molecular Dynamics Simulations of Crude Oil/Brine Displacement in Calcite Mesopores[J]. Langmuir: the ACS [Google Scholar]
  62. Jin Zhao, Guice Yao, Srinivasa B. Ramisetti, et al. Molecular dynamics investigation of substrate wettability alteration and oil transport in a calcite nanopore[J]. Fuel, 2019, 239. [Google Scholar]
  63. Larson, R. G., Scriven, L. E., Davis, H. T. Monte Carlo simulation of model amphiphile-oil–water systems[J]. Journal of Chemical Physics, 1985, 83(5): 2411–2420. [CrossRef] [Google Scholar]
  64. Gunn J R, Dawson K A. A lattice model description of amphiphilic mixtures. I. Equilibrium properties[J]. Journal of Chemical Physics, 1992, 96(4): 3152-3169. [CrossRef] [Google Scholar]
  65. Wu Chuan, Zhang Rusheng, Zhang Zuguo,et al. Molecular simulation and mechanism for upgrading and viscosity reduction of extra-heavy oil[J]. Acta Petrolei Sinica, 2015, 36(03): 355-360. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.