Issue |
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
|
|
---|---|---|
Article Number | 04023 | |
Number of page(s) | 8 | |
Section | MEA2020-Mechanical Engineering and Automation | |
DOI | https://doi.org/10.1051/e3sconf/202123304023 | |
Published online | 27 January 2021 |
Optimal Structure and Size of Multi-segment Soft Robotic Arms with Finite Element Method
1 Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China
* Corresponding author: zhaoliping@csu.ac.cn
Pneumatic actuate of multi-segment soft robotic arm is a significant structure and has extensive applications. However, the study of the optimal structure and size of multi-segment soft robotic arm has not been achieved. In this study, the finite element method is used to optimized the structure and size of soft robotic arm. We report that the two-segment structure of soft robotic arm has better performance for the general manipulator operation task through evaluating bending angles with different structures and parameters. The optimal ratio of the total length of non-cavity section to the total length of the soft robotic arm with two-segment is 0.21. And soft robotic arm performs better when the length of the fixed first section, the linkage section between two cavity sections and the end section are equal. Two cavities in each segment has more advantages in tasks of plane bending, while three cavities structure has better adaptability when the task need bend in the space. These results in this study provide a reference and simplify the process for the structure and size design of the multi-segment soft robotic arm in the future.
© The Authors, published by EDP Sciences 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.