Open Access
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
Article Number 04023
Number of page(s) 8
Section MEA2020-Mechanical Engineering and Automation
Published online 27 January 2021
  1. L. Margheri, C. Laschi, B. Mazzolai. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements. Bioinspiration & Biomimetics, 2012, 7(2):025004. [Google Scholar]
  2. M. Sfakiotakis, A. Kazakidi, D. P. Tsakiris. Octopus-inspired multi-arm robotic swimming. Bioinspiration & Biomimetics, 2015, 10(3):035005. [Google Scholar]
  3. L. Wang, SG. Nurzaman, F. Iida. Soft-Material Robotics. Foundations & Trends in Robotics, 2014; 5(3):1-75. [Google Scholar]
  4. F. Schmitt, O. Piccin, L. Barbe, et al. Soft Robots Manufacturing: A Review. Frontiers in Robotics and AI 2018; 5:84. [PubMed] [Google Scholar]
  5. K. Chubb, D. Berry, T. Burke. Towards an ontology for soft robots: What is soft?. Bioinspiration & Biomimetics, 2019, 14(6). [Google Scholar]
  6. Amendjohn, Chengnadia, Fakhourisami, et al. Soft Robotics Commercialization: Jamming Grippers from Research to Product. Soft robotics 2016;3(4): 213-222. [CrossRef] [PubMed] [Google Scholar]
  7. D. Rus, MT. Tolley. Design, fabrication and control of soft robots. Nature 2015; 521(7553): 467-475. [PubMed] [Google Scholar]
  8. Y. Hao, Z. Gong, Z. Xie, et al. Universal soft pneumatic robotic gripper with variable effective length. Chinese control conference 2016: 6109-6114. [Google Scholar]
  9. G. Singh, G. Krishnan. Designing Fiber-Reinforced Soft Actuators for Planar Curvilinear Shape Matching. Soft robotics 2020;7(1): 109-121. [CrossRef] [PubMed] [Google Scholar]
  10. KC. Galloway, Y. Chen, E. Templeton, et al. Fiber Optic Shape Sensing for Soft Robotics. Soft robotics 2019; 6(5): 671-684. [CrossRef] [PubMed] [Google Scholar]
  11. Y. Zhang, N. Zhang, H. Hingorani, et al. Fast - Response, Stiffness - Tunable Soft Actuator by Hybrid Multimaterial 3D Printing. Advanced Functional Materials 2019; 29(15). [Google Scholar]
  12. KC. Galloway, KP. Becker, B. Phillips, et al. Soft Robotic Grippers for Biological Sampling on Deep Reefs. Soft robotics 2016; 3(1): 23-33. [CrossRef] [PubMed] [Google Scholar]
  13. Z. Wolf, A. Jusufi, D. Vogt, et al. Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model. Bioinspiration & Biomimetics, 2020, 15(4). [Google Scholar]
  14. L. Ge, F. Chen, D. Wang, et al. Design, Modeling, and Evaluation of Fabric-Based Pneumatic Actuators for Soft Wearable Assistive Gloves. Soft robotics 2020; [Google Scholar]
  15. P. Polygerinos, Z. Wang, KC. Galloway, et al. Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems 2015; 135-143. [Google Scholar]
  16. G. Agarwal, N. Besuchet, B. Audergon, et al. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices. Scientific Reports 2016; 6(34224): 34224-34224. [CrossRef] [PubMed] [Google Scholar]
  17. G. Gerboni, A. Diodato, G. Ciuti, et al, Menciassi A. Feedback Control of Soft Robot Actuators via Commercial Flex Bend Sensors. IEEE-ASME Transactions on Mechatronics 2017; 22(4): 1881-1888. [CrossRef] [Google Scholar]
  18. SM. Mustaza, Y. Elsayed, C. Lekakou, et al. Dynamic modeling of fiber-reinforced soft manipulator: A visco-hyperelastic material-based continuum mechanics approach. Soft robotics 2019; 6(3): 305-317. [CrossRef] [PubMed] [Google Scholar]
  19. X. Peng, N. Zhang, L. Ge, et al. Dimension Optimization of Pneumatically Actuated Soft Continuum Manipulators. 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Korea (South) 2019; 14-18. [Google Scholar]
  20. A. D. Marchese, R. Daniela. Design, kinematics, and control of a soft spatial fluidic elastomer manipulator. The International Journal of Robotics Research. 2016;35(7):840-869. [Google Scholar]
  21. Y. Elsayed, A. Vincensi, C. Lekakou, et al. Finite Element Analysis and Design Optimization of a Pneumatically Actuating Silicone Module for Robotic Surgery Applications. Soft robotics 2014; 1(4): 255-262. [Google Scholar]
  22. RK. Katzschmann, CD. Santina, Y. Toshimitsu, et al. Dynamic Motion Control of Multi-Segment Soft Robots Using Piecewise Constant Curvature Matched with an Augmented Rigid Body Model. Robosoft19. 2019. [Google Scholar]
  23. F. Giorgio-Serchi, A. Arienti, F. Corucci, et al. Hybrid parameter identification of a multi-modal underwater soft robot. Bioinspiration & Biomimetics, 2017, 12(2):025007. [Google Scholar]
  24. X. Li, L. Zhao, W. Zhang. Hook-Shaped Bending and S-Shaped Bending of Soft Robotic Arm. 2020 4th International Conference on Robotics and Automation Sciences (ICRAS) 2020;1-5 [Google Scholar]
  25. G. Singh, C. Xiao, ET. Hsiao-Wecksler, et al. Design and analysis of coiled fiber reinforced soft pneumatic actuator. Bioinspiration & Biomimetics, 2018. [Google Scholar]
  26. S. Grazioso, GD. Gironimo, B. Siciliano. A Geometrically Exact Model for Soft Continuum Robots: The Finite Element Deformation Space Formulation. Soft robotics 2019; 6(6): 790-811. [CrossRef] [PubMed] [Google Scholar]
  27. G. Singh, G. Krishnan. A constrained maximization formulation to analyze deformation of fiber reinforced elastomeric actuators. Smart Materials and Structures 2017; 26(6). [Google Scholar]
  28. F. Connolly, CJ. Walsh, K. Bertoldi. Automatic design of fiber-reinforced soft actuators for trajectory matching. Proceedings of the National Academy of Sciences of the United States of America 2017; 114(1): 51-56. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.