Issue |
E3S Web Conf.
Volume 237, 2021
3rd International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2020)
|
|
---|---|---|
Article Number | 01042 | |
Number of page(s) | 7 | |
Section | Environmental Protection and Environmental Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202123701042 | |
Published online | 09 February 2021 |
Effect of nitrogen fertilization on maize yield responses to soil microbial activity and root length density in the North China Plain
1
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
2
School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
3
School of Water Resources and Environment, China University of Geosciences, Beijing 100083, People’s Republic of China
* Corresponding author: Wangqh@163.com
A maize field experiment in the North China Plain was conducted to understand the effect of different N fertilizer rate on the yield of maize, using soil microbial activity and root length density (RLD) as performance parameters, due to their possibility to enhance productivity. The four N fertilizer rates were 0 (N0), 120 (N120), 210 (N210) and 300 (N300) kg N hm-2. The results indicated that nitrogen (N) fertilizer had a significant influence not only on yield (p<0.05), but also on root length density (p<0.05) and soil microbial activity (p<0.05). In addition, the soil microbial activity and RLD were significantly related with maize yield. RLD differences were generally evident within the 100 cm soil layer, whereas there was no difference in the deeper soil under different N treatments. The most RLD concentrated in 0-60cm soil layer under N0, N120 and in 0-90cm soil layer under N210, N300. The microbial growth rate constant (k) was greater in N210 than other treatments. Generally, N fertilizer application can stimulate root growth and microbial activity, meanwhile, they can interact with each other, heighten the availability of N fertilizer in soil, thus enhanced yield of maize. According to our study, 210 kg N hm-2 was the optimum N fertilizer rate to achieve maximum yield and sustain the soil productivity.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.