Issue |
E3S Web Conf.
Volume 237, 2021
3rd International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2020)
|
|
---|---|---|
Article Number | 02010 | |
Number of page(s) | 5 | |
Section | Energy Conservation and Emission Reduction, Energy Science | |
DOI | https://doi.org/10.1051/e3sconf/202123702010 | |
Published online | 09 February 2021 |
Space electromagnetic interference analysis of secondary equipment signal cable
Dongguan Power Supply Bureau of Guangdong Power Grid Corporation, Dongguan 523000, China
* Corresponding author: kuangfancsg@163.com
In the field of high-voltage transmission and distribution, the secondary equipments are influenced by the electromagnetic coupling effect generated by the primary circuit, which causes strong interference to the signal cable. In this paper, an equivalent circuit model is established for the secondary cables in different forms, namely conventional cable, coaxial cable and twisted pair cable, based on transmission line theory. Based on the model, the responses of these three kinds of signal cables under the impact of spatial plane electromagnetic wave are analysed in frequency domain. Different impedance characteristics of the cables at the near-end and far-end, and different cable layouts, and different injection directions of the electromagnetic wave are considered in the analysis. The response characteristics of different kinds of signal cables subjected to electromagnetic wave are obtained in frequency domain. By comparing the response characteristics of different kinds of signal cables in different conditions, measures to supress the interference from the coupling of electromagnetic wave are obtained. It can be used to guide the selection and cabling of the signal cables for the secondary equipment in power system.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.