Issue |
E3S Web Conf.
Volume 238, 2021
100RES 2020 – Applied Energy Symposium (ICAE), 100% RENEWABLE: Strategies, Technologies and Challenges for a Fossil Free Future
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 5 | |
Section | Renewable Energies | |
DOI | https://doi.org/10.1051/e3sconf/202123801007 | |
Published online | 16 February 2021 |
Energy recovery from biowaste: influence of hydraulic retention time on biogas production in dry-anaerobic digestion
DESTEC Department of Energy, Systems, Territory and Construction Engineering, 56122 Pisa, Italy
* Corresponding author: isabella.pecorini@unipi.it
The hydraulic retention time (HRT) is a key parameter in dry-anaerobic digestion to set during the reactor configuration in order to achieve the optimal biogas production. For this reason, the study compared the results of two experimental tests operating with an HRT of 23 and 14 days. During the tests, the feedstock was organic fraction of municipal solid waste with a solid content of 33% and the digester was a pilot-scale plug-flow reactor operating in thermophilic condition. The highest specific biogas production of 311.91 Nlbiogas kg-1 d-1 was achieved when the HRT was set to 23 days. On the contrary, the highest methane production rate of 1.43 NlCH4 l-1 d-1 was achieved for an HRT of 14 days. In addition, the volatile solids removal (49.15% on average) and the energy content o(4.8 MJ kg-1 on average) were higher for HRT 23 days than for HRT14 days. The results indicated that in dry-anaerobic digestion of organic fraction of municipal solid waste, 23 days is a suitable HRT for energy recovery.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.