Issue |
E3S Web Conf.
Volume 238, 2021
100RES 2020 – Applied Energy Symposium (ICAE), 100% RENEWABLE: Strategies, Technologies and Challenges for a Fossil Free Future
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 7 | |
Section | Renewable Energies | |
DOI | https://doi.org/10.1051/e3sconf/202123801008 | |
Published online | 16 February 2021 |
Integration of two-stage thermochemical treatment and chemical leaching for extraction of advanced biochar and high value critical raw materials from sewage sludge
1
Renewable Energy COnsortium for R&D (RE-CORD) Viale J. F. Kennedy, 182, 50038 Scarperia e San Piero, Italy
2
“Galileo Ferraris” Energy Department, Polytechnic of Turin, Corso Duca degli Abruzzi 24, I-10129, Turin, Italy
3
Department of Industrial Engineering, University of Florence Viale Morgagni 50, 50134 Florence, Italy
* Corresponding author: david.chiaramonti@polito.it
The proposed study aims at assessing the reliability of a new sludge conversion technology, based on integrating thermochemical treatment, with a chemical leaching stage for producing high quality biochar and valuable liquid with high concentration of phosphorus and other critical elements. The concept is based on the fact that sludge ash usually contains about 25% of CaO, 20% of P2O5, and about 25-30% of SiO2. With the removal of these elements, ash content is drastically reduced. The study is thus composed of two phases: (1) assessment of sludge thermochemical conversion routes, and (2) chemical leaching produced biochar. In the first phase, three thermochemical routes are investigated: HTC of fresh sludge at 80% moisture, slow pyrolysis of dry sludge, slow pyrolysis of HTC solid (hydrochar). In the second phase, the solid obtained by slow pyrolysis (biochar) is upgraded through leaching treatment to extract inorganic valuable elements: P, Mg, K. The first phase of the study demonstrated that processing dry sludge in slow pyrolysis at 450°C allows to obtain a low volatile carbonaceous product with characteristics similar to a thermal coal. Second phase demonstrated that, after acid leaching process using HNO3, ash content in biochar decreased from 41.63% to 16.67%. This method also demonstrated to be a valid solution to extract more than 90% of P, K, and Mg contained in the solid, making these elements available for being recycled in agriculture and other industrial uses. At the same time, the increase of the biochar C content and calorific value makes it a valid substitute of fossil coals.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.