Issue |
E3S Web Conf.
Volume 245, 2021
2021 5th International Conference on Advances in Energy, Environment and Chemical Science (AEECS 2021)
|
|
---|---|---|
Article Number | 03074 | |
Number of page(s) | 4 | |
Section | Chemical Performance Research and Chemical Industry Technology Research and Development | |
DOI | https://doi.org/10.1051/e3sconf/202124503074 | |
Published online | 24 March 2021 |
Adsorption and Photocatalytic Properties of Modified Rectorite-Titanium Dioxide Composites
1 School of Chemical and Biological Engineering, Qilu Institute of Technology, Jinan Shandong. 250200. China
2 School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang Jiangxi. 330013. China
Yuanyuan Du1* and Xinjun Li1* contributed equally to this work.
* Corresponding author’s email: duyuan01@126.com, 928878031@qq.com
Using rectorite as raw material, REC is modified by nitric acid, TiO2 is attached to the surface of the acidized modified REC tablet to form modified REC-TiO2 composite materials by the sol-gel method, and its adsorption performance and photocatalytic properties were studied. The results show that the adsorption of REC, modified REC, modified REC-TiO2 composite materialtoporads to methylene blue increased with the increase of equilibrium concentration. The process of adsorption MB of modified REC-TiO2 composite materials is an endothermic process. The adsorption of REC, modified REC, modified REC-TiO2 composite materials to MB increased with the increase of temperature. When the temperature is 25 degree, the maximum adsorption capacity of REC is 93.985 mg/g, the maximum adsorption capacity of modified REC is 107.006 mg/g, and the maximum adsorption capacity of modified REC-TiO2 is 120.773 mg/g. The degradation rate of MB and p-nitrophenol by modified REC-TiO2 composite under illumination are 99% and 98%, respectively. The decontamination rate of MB and 4-NP of modified REC-TiO2 composites under darkness was 50% and 0.8%, respectively. Under light conditions, the degradation rate of MB and 4-NP in modified REC-TiO2 composite materials is improved.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.