Issue |
E3S Web Conf.
Volume 248, 2021
2021 3rd International Conference on Civil Architecture and Energy Science (CAES 2021)
|
|
---|---|---|
Article Number | 01052 | |
Number of page(s) | 4 | |
Section | Chemical Performance Structure Research and Environmental Pollution Control | |
DOI | https://doi.org/10.1051/e3sconf/202124801052 | |
Published online | 12 April 2021 |
Research Progress of Low Temperature Plasma Technology to Treat Sulfur-containing Malodorous Gas
Wuhan Second Ship Design and Research Institute, 430205 Wuhan, China
* Corresponding author: shunli878@163.com
This paper briefly discusses the source, harm and removal methods of sulfur-containing malodorous gas. At this stage, the main methods for treating sulphur-containing malodorous gases are physical, chemical and biological methods. In contrast, low temperature plasma technology combines the advantages of physical, chemical and biological methods, and can effectively overcome the disadvantages of traditional processes. Through the comparison of various methods, the advantages of low temperature plasma treatment of sulfur-containing malodorous gas are summarized, and the corresponding removal mechanism is proposed. The treatment progress and existing problems of using low-temperature plasma to remove sulfur-containing malodorous gas, especially hydrogen sulfide, carbon disulfide, methyl sulfide, methyl mercaptan and dimethyl disulfide, are comprehensively discussed. A new idea for the simultaneous removal of multi-component sulfur-containing malodorous gas by low temperature plasma is proposed. Compared with traditional methods, low temperature plasma technology has the advantages of simple process, strong applicability, easy operation, and low energy consumption in processing sulfur-containing malodorous gases. The treatment of sulfur-containing malodorous gas by low-temperature plasma technology needs further research.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.