Issue |
E3S Web Conf.
Volume 194, 2020
2020 5th International Conference on Advances in Energy and Environment Research (ICAEER 2020)
|
|
---|---|---|
Article Number | 04062 | |
Number of page(s) | 10 | |
Section | Environmental Protection and Pollution Control | |
DOI | https://doi.org/10.1051/e3sconf/202019404062 | |
Published online | 15 October 2020 |
Removal and recovery of SO2 and NO in oxy-fuel combustion flue gas by calcium-based slurry
1 School of Energy and Power Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, China
2 Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, China
3 Department of Computer Science, George Mason University, Commonwealth of Virginia, USA
4 DONGFANG TURBINE Co.,LTD, 618000 Deyang, China
* Corresponding author: Dunyu Liu; Email address: liudunyu@usst.edu.cn; Jun Chen; Email address: j.chen@usst.edu.cn
This study investigates the use of calcium-based slurry for simultaneous removal NO and SO2 from oxy-fuel combustion flue gas, and recovery of the sulfur and nitrogen species in resulting solutions. The experiments were performed in a bubbling reactor in a transient mode under the pressure of 20 bar. The various influencing factors including the CaO amount, carrier gas (N2/CO2), and absorption time on the simultaneous NO and SO2 removal process, and the solution products were studied comprehensively. The results show that the NO2 removal efficiency can be improved by the presence of CO2, and the gas phase HNO2 produces in this process. The addition of CaO has positive effects not only on the NO2 removal efficiency but also on the formation of stable HNO3. With the presence of CO2, CaCO3 is formed in a solution initially. With the decrease of pH, CaCO3 is gradually converted to CaSO4, and in particular CaCO3 can be fully avoided through decreasing the pH of an absorption solution to 1.14. At the same time, the formation of unstable S(IV) and NO2- can be prevented when the solution pH is lower than 1.37. The nitrogen and sulfur compounds in the absorption solution (at pH 1.14) were further separated by the addition of different amounts of CaO. In particular, 95% of SO42- finally can be recovered in the form of CaSO4.2H2O with nitrogen in solution existing as NO3- by controlling the Ca/S ratio at 4.70. The effectiveness of calcium-based slurry on the removal and recovery of SO2 and NO is confirmed.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.