Issue |
E3S Web Conf.
Volume 263, 2021
XXIV International Scientific Conference “Construction the Formation of Living Environment” (FORM-2021)
|
|
---|---|---|
Article Number | 01022 | |
Number of page(s) | 10 | |
Section | Modern Building Materials | |
DOI | https://doi.org/10.1051/e3sconf/202126301022 | |
Published online | 28 May 2021 |
Connection of water permeability with a number of physical properties of polymers
1 A. N. Nesmeyanov Institute of Organoelement compounds Russian Academy of Sciences, Department of high-molecular compounds, Moscow, 119991, Russia
2 Moscow State University of Civil Engineering, Yaroslavskoe shosse, 26, Moscow, 129337, Russia
3 Lomonosov Moscow State Universuty, Physical faculty, GSP-1, Leninskie Gory, Moscow, 119991, Russia
Currently, methods for predicting the properties of polymers are very popular, since they simplify the work of synthetic chemists. Instead of lengthy and time-consuming experiments, many properties of polymers can be predicted in advance based on their chemical structure. Naturally, such tasks must be computerized so that the properties are predicted after the chemical structure of the repeating polymer unit is displayed on the display screen. This is the so-called direct task. The inverse problem is more complex and interesting. It consists in entering the intervals of the desired characteristics into the computer. Then computer synthesis of polymers possessing these characteristics are realized. The work consists in writing a computer program that allows the computer synthesis of polymers of different classes with specified intervals of water permeability. These classes include polyurethanes, polysulfones, polysulfides, polyethers and polyesters, polyamides, polyketones and polyethyrketones, polycarbonates, polyolefins, vinyl polymers, polystyrene, acrylic and methacrylic polymers. On the basis of this program, water permeability compatibility diagrams are constructed with various physical characteristics of polymers – glass transition temperature, temperature of the onset of intensive thermal degradation, cohesion energy, density, solubility parameter (Hildebrand parameter).
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.