Issue |
E3S Web Conf.
Volume 263, 2021
XXIV International Scientific Conference “Construction the Formation of Living Environment” (FORM-2021)
|
|
---|---|---|
Article Number | 05023 | |
Number of page(s) | 7 | |
Section | Global Environmental Challenges | |
DOI | https://doi.org/10.1051/e3sconf/202126305023 | |
Published online | 28 May 2021 |
Protection of Indoor Air from Radioactive Gas Radon
1 Russian Academy of Architecture and Building Science Research Institute of Building Physics, 127238, Moscow, Russia
2 Moscow State University of Civil Engineering, Yaroslavskoe shosse, 26, Moscow, 129337, Russia
* Corresponding author: natbak@mail.ru
A modern human receives most of the radioactive annual dose in buildings from radon and its progeny, which can cause lung cancer. In such conditions, the design of radon-safe buildings is an urgent task in the context of preserving the population collective health. The paper shows the inefficiency of using the radon flux density from the soil surface as a criterion for the potential radon hazard of a construction site due to its significant temporal and spatial variability. The design of an experimental device, which makes it possible to simulate the real conditions of radon transport in soil in laboratory conditions, is described, and the results of determining the dominant radon transport mechanism in soil by means of a laboratory experiment are presented. A method for determining the required radon resistance of the floor structure is proposed on the basis of the diffusion model of stationary transport.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.