Issue |
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
|
|
---|---|---|
Article Number | 02030 | |
Number of page(s) | 10 | |
Section | Road Construction, Building Structures and Materials | |
DOI | https://doi.org/10.1051/e3sconf/202126402030 | |
Published online | 02 June 2021 |
Mechanical Properties and Design of Concrete with Hybrid Steel and Basalt Fiber
Institute of Building and Architecture, National University of Water and Environmental Engineering, Rivne, Ukraine
* Corresponding author: o.m.bordiuzhenko@nuwm.edu.ua
Adding different fiber types may yield improvement of steel fiber reinforced concrete (SFRC) features. Therefore, the investigation of hybrid fiber reinforced concrete (HFRC) mechanical properties is relevant. The effect of adding hybrid steel and basalt fiber on the mechanical properties of fine-grained concrete is studied. It is shown that hybrid fiber reinforcement using optimal steel and basalt fiber ratio allows preventing concrete mixtures' segregation and improving their structure homogeneity. This, in turn, allows achieving higher concrete strength values. In most cases, the design of such concrete compositions is based on engineering experience that limits the designers' capabilities. Therefore, an effective methodology for proper HFRC composition design should be developed. The present study is focused on developing such a methodology. The developed methodology includes using the mathematical experiments planning method to design optimal composition of high-strength fine-grained fiber reinforced concrete with hybrid steel and basalt fiber reinforcement. It is demonstrated that the proposed method can be effectively used for the design of optimal compositions of HFRC.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.