Issue |
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
|
|
---|---|---|
Article Number | 03004 | |
Number of page(s) | 10 | |
Section | Hydraulics of Structures, Hydraulic Engineering and Land Reclamation Construction | |
DOI | https://doi.org/10.1051/e3sconf/202126403004 | |
Published online | 02 June 2021 |
Influence of cavitation on pressure pulsation through impeller of large pumps
1 Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan
2 Jizzakh Polytechnic Institute, Jizzakh, Uzbekistan
* Corresponding author: jaloliddin5@mail.ru
The article provides the main recommendations for studying the processes of cavitation development on the models of pumping units OPV-10-260 and V 20-13/45 with an impeller diameter Dr = 250 mm. The nature of the effect of cavitation depends on forms of pressure pulsation. The purpose of this work is to study abrasive-cavitation erosion of large pumps. The research objectives are to develop a methodology for calculating their operating modes, taking into account the minimum deterioration of working parts. Strongly developed cavitation leads to disruption of regular pulsations and an increase in the swing of the high-frequency component. Investigations of operating mode of pumps with deterioration of elements of flow section were carried out, and the characteristics of materials for the manufacture of hydromechanical equipment for resistance to cavitation deterioration were refined. According to experiments, the influence of pressure on the pressure fluctuation range begins to significantly affect if the pump pressure is less than 5 m. The nature of the effect of cavitation depends on the forms of pressure pulsation. The complexity of composition, high cost of high-alloy steels, and non-ferrous alloys make it irrational to use them in massive parts operating under cavitation-abrasive conditions. It is recommended to use the developed dependencies on machine water elevating systems to reduce deterioration by improving the quality of impeller materials.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.