Issue |
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
|
|
---|---|---|
Article Number | 04076 | |
Number of page(s) | 11 | |
Section | Mechanization, Electrification of Agriculture and Renewable Energy Sources | |
DOI | https://doi.org/10.1051/e3sconf/202126404076 | |
Published online | 02 June 2021 |
Theoretical model of the effect of dimple on friction behavior in hydrodynamic lubrication regime
1 Sun Moon University, Asan, Korea
2 Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan
* Corresponding author: avaz2662@sunmoon.ac.kr
In this paper, full-film lubrication between the rigid smooth and dimpled surfaces was addressed. A theoretical model is developed to study the effect of a dimple on friction where the smooth surface is rotating while the dimpled surface is at rest. To simplify the problem, the magnified dimple cell is investigated along with some assumptions. Because dimples deploy periodically along with the x and y directions, the lubricant pressure also deploys periodically. A theoretical model can be developed for one cell and then extended to the whole surface. The main goal of this study is to understand the dimple effect on friction in a hydrodynamic lubrication regime. The main applications of this model are several types of bearings (point contact, line contact etc.) and mechanical parts where two surfaces interact in relative motion. Findings the optimum dimensions for the dimples also seem to be one of the interesting research areas in mechanization of agricultural and renewable energy sources.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.