Open Access
Issue |
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
|
|
---|---|---|
Article Number | 04076 | |
Number of page(s) | 11 | |
Section | Mechanization, Electrification of Agriculture and Renewable Energy Sources | |
DOI | https://doi.org/10.1051/e3sconf/202126404076 | |
Published online | 02 June 2021 |
- T.H. Yu, and F. Sadeghi, Groove effects on thrust washer lubrication, J. Trib., 123 (2), pp. 295–304, https://doi.Org/10.1115/1.1308014. (2001), [Google Scholar]
- I. Etsion, Y. Klingerman, and G. Halperin, Analytical and experimental investigation of laser-textured mechanical seal faces, Tribol. Trans., (42), pp. 511–516, https://doi.org/10.1080/10402009908982248. (1999), [Google Scholar]
- A. Vaidya, and F. Sadeghi, Hydrodynamic lubrication of scroll compressor thrust bearing with grooves and circular pockets, ASHRAE Trans., 114 (2), pp. 411–421, (2008). [Google Scholar]
- A. Vaidya, and F. Sadeghi, Experimental investigation of orbiting thrust bearing using wide and shallow circular pockets, ASHRAE Trans., 115 (2), pp. 668–675, (2009). [Google Scholar]
- D.B. Hamilton, J.A. Walowit, and C.M. Allen, A theory of lubrication by microasperities, ASME J. Basic Eng. Mater., 88 (1), pp. 177–185. https://doi.Org/10.1115/1.3645799. (1966). [Google Scholar]
- I. Etsion, and L. Burstein, A model for mechanical seals with regular microsurface structure, Tribol. Trans., 39 (3), pp. 677–683, https://doi.org/10.1080/10402009608983582. (1996). [Google Scholar]
- M. Geiger, S. Roth, and W. Becker, Influence of laser-produced microstructures on the tribological behaviour of ceramics, Surf. Coat. Technol., 100-101, pp. 17–22, https://doi.org/10.1016/S0257-8972(97)00581-1. (1998), [Google Scholar]
- X. Wang, K. Kato, K. Adachi, and K. Aizawa, The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed, Tribol. Int., 34, pp. 703–711, https://doi.org/10.1016/S0301- 679X(01)00063-9. (2001), [Google Scholar]
- V. Brizmer, Y. Kligerman, and I. Etsion, A laser surface textured parallel thrust bearing, Tribol. Trans., 46 (3), pp. 397–403, https://doi.org/10.1080/10402000308982643. (2003), [Google Scholar]
- A. Blatter, M. Maillat, S.M. Pimenov, G.A. Shafeev, A.V. Simakin, and E.N. Loubnin, Lubricated sliding performance of laser-patterned sapphire, Wear, 232, pp. 226–230, https://doi.org/10.1016/S0043-1648(99)00150-7. (1999), [Google Scholar]
- N.P. Suh, M. Mosleh, and P.S. Howard, “Control of friction”, Wear, 175, pp. 151–158, https://doi.org/10.1016/0043-1648(94)90178-3. (1994), [Google Scholar]
- R. Ranjan, D. N. Lambeth, M. Tromel, P. Goglia, and Y. Li, Laser texturing for low- flying-height media, J. Appl. Phys., 69 (8), pp. 5745–5747, https://doi.org/10.1063Z1.347908. (1991), [Google Scholar]
- X. Wang, W. Liu, F. Zhou, and D. Zhu, Preliminary investigation of the effect of dimple size on friction in line contacts”, Trib. Int., 42 (7), pp. 1118–1123, https://doi.org/10.1016/j.triboint.2009.03.012. (2009), [Google Scholar]
- Y. Wan, and D.S. Xiong, The effect of laser surface texturing on frictional performance of face seal, J. Mater. Process. Technol., 197 (1-3), pp. 96–100, https://doi.org/10.1016/j.jmatprotec.2007.06.019. (2008), [Google Scholar]
- T. Nanbu, N. Ren, Y. Yasuda, D. Zhu, and Q. J. Wang, Micro-textures in concentrated conformal-contact lubrication: effects of texture bottom shape and surface relative motion, Tribol. Lett. 29, pp. 241–252, https://doi.org/10.1007/s11249- 008-9302-9. (2008), [Google Scholar]
- X. Wang, K. Kato, and K. Adachi, The lubrication effect of micro-pits on parallel sliding faces of SiC in water, Tribol. Trans., 45 (3), pp. 294–301, https://doi.org/10.1080/10402000208982552. (2002), [Google Scholar]
- H.L. Costa, and I.M. Hutchings, Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions, Tribol. Int., 40 (8), pp. 1227–1238, https://doi.org/10.1016/j.triboint.2007.01.014. (2007), [Google Scholar]
- M. Wakuda, Y. Yamauchi, S. Kanzaki, and Y. Yasuda, Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact, Wear, 254, pp. 356–363, https://doi.org/10.1016/S0043-1648(03)00004-8. (2003), [CrossRef] [Google Scholar]
- K. K. Steinhoff, W. Rasp, and O. Pawelski, Development of deterministic-stochastic surface structures to improve the tribological conditions of sheet forming processes, J. Mater. Process. Technol., 60, pp. 355–361, https://doi.org/10.1016/0924-0136(96)02354-0. (1996), [Google Scholar]
- U. Pettersson, and S. Jacobson, Friction and wear properties of micro textured DLC coated surfaces in boundary lubricated sliding, Tribol. Lett., 17 (3), pp. 553–559, https://doi.Org/10.1023/B:TRIL.0000044504.76164.4e. (2004), [Google Scholar]
- A. Ronen, I. Etsion, and Y. Kligerman, Friction reducing surface texturing in reciprocating automotive components, Tribol. Trans., 44, pp 359–366, (2001), https://doi.org/10.1080/10402000108982468. [CrossRef] [Google Scholar]
- M. Arghir, N. Roucou, M. Helene, and J. Frene, Theoretical analysis of the incompressible laminar flow in a macro-roughness cell, J. Tribol. - Trans. ASME, 125 (2), pp. 309–318, https://doi.org/10.1115Z1.1506328. (2003), [Google Scholar]
- L. Burstein, and D. Ingman, Pore ensemble statistics in application to lubrication under reciprocating motion, Tribol. Trans. 43, pp. 205–212. https://doi.org/10.1080/10402000008982330. (2000), [Google Scholar]
- L. Burstein, and D. Ingman, Effect of pore ensemble statistics on load support of mechanical seals with pore-covered faces, J. Tribol. - Trans. ASME, 121 (4), pp. 927–932, https://doi.org/10.1115/L2834157. (1999), [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.