Issue |
E3S Web Conf.
Volume 267, 2021
7th International Conference on Energy Science and Chemical Engineering (ICESCE 2021)
|
|
---|---|---|
Article Number | 02055 | |
Number of page(s) | 5 | |
Section | Environmental Chemistry Research and Chemical Preparation Process | |
DOI | https://doi.org/10.1051/e3sconf/202126702055 | |
Published online | 04 June 2021 |
Numerical simulation of explosive properties of ethylene-air in flameproof enclosure with interconnected structure under pressure piling
1 School of mechanical engineering, Hebei University of Technology, Tianjin, China
2 CNOOC Tianjin Chemical Research & Design Institute Ltd, Tianjin, China
* Corresponding author:
a lidong16@cnooc.com.cn
b dsj@hebut.edu.cn
c mengxue@pcec.com.cn
In order to investigate explosive properties of ethylene-air premixed gas in flameproof enclosure with interconnected structure under pressure piling, a 161.5 mm × 161.5 mm × 250 mm cylindrical flameproof enclosure and a 161.5 mm × 161.5 mm × 500 mm cylindrical flameproof enclosure connected by a partition with a hole (inner diameter of 15 mm) were studied. A mathematical model of the fluid dynamics combustion reaction was selected to perform numerical simulations of this structure using the finite volume method. Numerical simulations revealed that under pressure piling, the maximum explosion pressure in Cavity B was significantly higher than that in Cavity A; the maximum rate of explosion pressure rise in Cavity B was significantly higher than that in Cavity A; combustion rate of combustible gas in Cavity B was much higher than that in Cavity A. Results of the study have practical and theoretical significance for the design and installation of flameproof enclosures.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.