Issue |
E3S Web Conf.
Volume 270, 2021
International scientific forum on computer and energy Sciences (WFCES 2021)
|
|
---|---|---|
Article Number | 01024 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/e3sconf/202127001024 | |
Published online | 09 June 2021 |
Mathematical models of non-sinusoidal power supply of a three-phase transverse field MHD inductor
1
Siberian Federal University, 79 Svobodny Ave., Krasnoyarsk, 660041, Russia
2
Thermal Electrical Systems LLC, 12 Spandaryan St., Krasnoyarsk, 660020, Russia
* Corresponding author: Kinev_ES@ontecom.com
The article presents an approach to the development of mathematical models of non-sinusoidal and dual-frequency power supply for a linear induction MHD machine for metallurgical purposes. The issues of construction and numerical modeling of the modes of a three-phase inductor for a liquid aluminum stirrer are considered. Reduction of losses is ensured by the use of a toothless design of the MHD inductor. The absence of steel teeth reduces saturation of the magnetic circuit and current distortion. It is proposed to use the parametric model of the inductor under the furnace in the ANSYS environment to clarify the modes of the complex. To take into account mutual induction, using controlled sources, a circuit model was built, and a numerical calculation of the modes was carried out. The characteristics of instantaneous currents and voltages are obtained when powered from a three-phase source with close frequencies, with pronounced beats. It is shown that the presence of mutual inductance redistributes currents in the delta windings, which must be taken into account when developing the design of linear induction machines. It is proposed to use sources with non-sinusoidal periodic currents in the modeling system. The analysis is carried out and the main types of modulated voltage characteristics in the power supply system of the induction MHD stirrer are shown.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.