Issue |
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
|
|
---|---|---|
Article Number | 04025 | |
Number of page(s) | 4 | |
Section | Environmental Materials and Solid Waste Recycling Technology | |
DOI | https://doi.org/10.1051/e3sconf/202127104025 | |
Published online | 15 June 2021 |
Simulation of Optical Coherence Elastography in Agar Based on Finite Element Analysis
Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang, 330063, China
* Corresponding author: fanglh71@126.com
The finite element method is used to simulate the optical coherent elastic imaging in Agar. The shear wave velocity in Agar was measured by ARF-OCE system, and then the Agar model was established by finite element method, and then the shear wave velocity in Agar model was measured. The shear wave velocity in experiment and finite element simulation were compared and analyzed. The shear wave velocity obtained in the experiment is 2.50 m/s, and the range of shear wave velocity obtained in the finite element simulation is 2.4802m/s, and the average wave velocity is 2.5167m/s. The finite element method can express tissue elasticity directly and clearly, and it plays a great guiding role in corneal elastography.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.