Open Access
Issue
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
Article Number 04025
Number of page(s) 4
Section Environmental Materials and Solid Waste Recycling Technology
DOI https://doi.org/10.1051/e3sconf/202127104025
Published online 15 June 2021
  1. Shah, S., M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophth Vis Sci, 48(7): p. 3026–3031 (2007) [CrossRef] [Google Scholar]
  2. Bercoff, J., M. Tanter, S. Chaffai, and M. Fink, Ultrafast imaging of beamformed shear waves induced by the acoustic radiation force. Application to transient elas. IEEE, 2: p. 1899–1902 (2002) [Google Scholar]
  3. Manduca, A., R. Muthupillai, P.J. Rossman, J.F. Greenleaf, and R.L. Ehman, Visualization of tissue elasticity by magnetic resonance elastography. Springer, Berlin, Heidelberg, p. 63–68 (1996) [Google Scholar]
  4. Li, C., G. Guan, X. Cheng, Z. Huang, and R.K. Wang, Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography. Opt Lett, 37(4): p. 722–724 (2012) [CrossRef] [PubMed] [Google Scholar]
  5. Ophir, J., A Quantitative Method for Imaging the Elasticity of Biological Tissue. Ultrason Imag, 13: p. 111–134 (1991) [CrossRef] [Google Scholar]
  6. P. Wang and Yang. Advances in New Technologies for Tissue Elastography[J]. Laser Biol, 25(6): 501–508, 514(2016)(in Chinese). [Google Scholar]
  7. Gangadhar, K., D.S. Hippe, J. Thiel, and M. Dighe, Impact of Image Orientation on Measurements of Thyroid Nodule Stiffness Using Shear Wave Elastography. J Ultras Med, 35(8): p. 1661 (2016) [CrossRef] [Google Scholar]
  8. Youk, J., H.M. Gweon, E.J. Son, J. Chung, J.A. Kim, and E.K. Kim, Three-dimensional shear-wave elastography for differentiating benign and malignant breast lesions: comparison with two-dimensional shear-wave elastography. Eur Radiol, 23(6): P 1519–1527 (2013) [CrossRef] [PubMed] [Google Scholar]
  9. Cassinotto, C., B. Lapuyade, A. Mouries, J.B. Hiriart, J. Vergniol, D. Gaye, C. Castain, B.L. Bail, F. Chermak, and J. Foucher, Non-invasive assessment of liver fibrosis with impulse elastography: Comparison of Supersonic Shear Imaging with ARFI andFibroScan. J Hepatol, 61(3): p. 550–557 (2014) [CrossRef] [PubMed] [Google Scholar]
  10. Tanter, M., D. Touboul, J.L. Gennisson, J. Bercoff, and M. Fink, High-Resolution Quantitative Imaging of Cornea Elasticity Using Supersonic Shear Imaging. Medical Imaging, IEEE, 28(12): p.1881–1893 (2009) [CrossRef] [Google Scholar]
  11. Zhu, J., Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K.K. Shung, Q. Zhou, and Z. Chen, Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method. Opt Lett, 40(9): P 2099–2102 (2015) [CrossRef] [PubMed] [Google Scholar]
  12. Qu, Y., M. Teng, Y. He, Z. Jiang, and Z. Chen, Acoustic Radiation Force Optical Coherence Elastography of Corneal Tissue. IEEE J Sel Top Quant, 22(3): p. 1–1 (2016) [CrossRef] [Google Scholar]
  13. J. Luo, J. Bai.Finite Element Analysis in Simelations of Ultrasound Elastography[J]. Beijing Biomed Eng, 22(2):99–103 (2003)(in Chinese). [Google Scholar]
  14. Han, Z., J. Li, M. Singh, S. Vantipalli, and K.V Larin. Assessing the viscoelasticity of green light induced CXL in the rabbit cornea by noncontact OCE and FEM. in SPIEBiOS.9693: P 96930X (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.