Issue |
E3S Web Conf.
Volume 273, 2021
XIV International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness - INTERAGROMASH 2021”
|
|
---|---|---|
Article Number | 04009 | |
Number of page(s) | 10 | |
Section | Environmental Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202127304009 | |
Published online | 22 June 2021 |
Linear versus nonlinear reliability-based topology optimization with application to bridge structures
1 INSA Rouen, St Etienne du Rouvray, France
2 College of Engineering and Technology, American University of the Middle East, Kuwait
3 Don State Technical University, Gagarin square 1, 344003, Rostov-on-Don, Russia
* Corresponding author: imad.antypas@mail.ru
In general, two types of topology optimization models can be found in literature. The first type is called Deterministic Topology Optimization (DTO) leading to a single layout when considering a given design space. The second type is called Reliability-Based Topology Optimization (RBTO) leading to various solutions. In our previous work, two strategies based on the Inverse Optimum Safety Factors (IOSF) were established and applied simply to the normal (Gaussian or linear) distribution law. In this work, linear and nonlinear (normal and lognormal) distribution RBTO cases are compared. A bridge structure is considered a numerical application to perform this comparison where different layouts at the same level of reliability can be found. The numerical results show that regarding the distribution laws, certain output parameters and safety factor values are affected. This change can affect the resulting topology layouts as well as the output parameter such as the compliance. When rising the values of the reliability index, the values of the compliance become larger and the volume values become lesser for the lognormal distribution when comparing to the normal one.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.