Issue |
E3S Web Conf.
Volume 279, 2021
III International Conference “Energy Efficiency and Energy Saving in Technical Systems” (EEESTS-2021)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 8 | |
Section | Modern Energy Efficient Automation Technology | |
DOI | https://doi.org/10.1051/e3sconf/202127901006 | |
Published online | 01 July 2021 |
Minimization of energy costs for UAV management in a conflict task
1
Don State Technical University, Rostov-on-Don, Russian Federation
2
Krasnodar higher military school, Krasnodar, Russian Federation
* Corresponding author: lapshin1917@yandex.ru
This article considers the method of developing an evader control strategy in the non-linear differential pursuit-evasion game problem. It is assumed that the pursuer resorts to the most probable control strategy in order to capture the evader and that at each moment the evader knows its own and the enemy’s physical capabilities. This assumption allows to bring the game problem down to the problem of a unilateral evader control, with the condition of reaching a saddle point not obligatory to be fulfilled. The control is realised in the form of synthesis and additionally ensures that the requirements for bringing the evader to a specified area with terminal optimization of certain state variables are satisfiedt. The solution of this problem will significantly reduce the energy losses for controlling an unmanned vehicle, the possible effect is to save 15-20 % of fuel with a probability of 0.98, to solve the problem of chasing the enemy.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.