Issue |
E3S Web Conf.
Volume 279, 2021
III International Conference “Energy Efficiency and Energy Saving in Technical Systems” (EEESTS-2021)
|
|
---|---|---|
Article Number | 01011 | |
Number of page(s) | 11 | |
Section | Modern Energy Efficient Automation Technology | |
DOI | https://doi.org/10.1051/e3sconf/202127901011 | |
Published online | 01 July 2021 |
Study increase the mechanical characteristics of tool materials by cryogenic treatment
1
Branch of the Kuban State Technological University, 352905, Armavir, Russia
2
Don State Technical University, 344002, Rostov-on-Don, Russia
3
Kuban State Technological University, 350072, Krasnodar, Russia
* Corresponding author: tur805@mail.ru
In this work, the hypothesis of taking into account a specific thermoEMF to determine the degree of hardening of the cutting tool by cryogenic hardening is put forward, which is the most convenient and important value from the point of view of information content. As a result of studies of improving the mechanical characteristics of instrumental materials by cryogenic treatment, the values of the absolute and specific values of thermo emf were revealed depending on the temperature of three instrumental materials obtained by tarrying them together with platinum. The values of temperatures at the maximum values of the specific thermo emf, have been obtained. It was found that deep cooling of the metal increases the degree of ordering of its structure and increases the vibrational energy of the crystal lattice. The results of the study showed that the resistance of the cryogenic cutting tool increases by up to three times, this positively affects the energy efficiency of the use of such a tool in production. The reduction of energy costs is expressed in the reduction of kilowatt-hours associated with the costs of sharpening the tool and can reach up to 30% of the total amount of electricity consumed.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.