Issue |
E3S Web Conf.
Volume 279, 2021
III International Conference “Energy Efficiency and Energy Saving in Technical Systems” (EEESTS-2021)
|
|
---|---|---|
Article Number | 01021 | |
Number of page(s) | 5 | |
Section | Modern Energy Efficient Automation Technology | |
DOI | https://doi.org/10.1051/e3sconf/202127901021 | |
Published online | 01 July 2021 |
Improving the energy efficiency of a piston engine based on the use of a numerical method for forming the laws of motion of gas distribution valves
1
Volgograd State Technical University, 1Department of heat engineering and hydraulics, 400005 Prosp. Lenin, 28, Volgograd, Russian Federation
2
Volgograd State University, Institute of priority technologies, Department of Information Security, 400062 Prosp. Universitetsky, 100, Volgograd, Russian Federation
* Corresponding author: bakhracheva@volsu.ru
The increase in the power, economic and environmental performance of modern internal combustion engines is largely due to the improvement of the system that controls the gas exchange processes. Its characteristics determine the quality of filling and cleaning of the cylinders in various operating modes, the loss of power for gas exchange and, consequently, the indicator and effective indicators of the engine. The issues of mathematical modeling of gas exchange processes in combination with the study and improvement of the gas distribution mechanism are considered. The results of experimental and computational studies of gas exchange of tractor diesel are presented. Reserves for improving the gas exchange and the engine as a whole are identified based on the choice of optimal valve timing phases and valve motion laws. They provide a reduction in the modulus of the average pressure of the pump passages in the range of operating modes by 12 - 14 %, which contributed to a decrease in the specific effective fuel consumption by 1.4 ÷ 2.2 g/kWh. The above allows us to conclude that the use of a generalized step-by-step numerical method for synthesizing the law of motion of a pusher with an upper stand allows us to obtain the maximum efficiency characteristics of the gas distribution in the presence of a number of restrictions.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.