Issue |
E3S Web Conf.
Volume 287, 2021
International Conference on Process Engineering and Advanced Materials 2020 (ICPEAM2020)
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 5 | |
Section | Green and Advanced Materials Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202128702004 | |
Published online | 06 July 2021 |
Optimization of Slow Pyrolysis of Bamboo for Biochar Production using Taguchi’s L9 Orthogonal Array
Biomass Processing Laboratory, HICoE Centre for Biofuel and Biochemical Research, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
This paper investigates the effects of three parameters (reaction temperature, feedstock particle size and nitrogen flow rate) towards the solid (char) yield from the pyrolysis of bamboo. Three-factor, three-level Taguchi’s L9 Orthogonal Array was used as the experimental design. The char yield at reaction temperatures of 300-500°C, feedstock particle size of 100-1000 μm, and nitrogen flow rate of 100-300 ml min−1 were investigated. The maximum solid yield was predicted based on signal-to-noise (S/N) ratio and was found to be at 300°C reaction temperature, 1000 μm feedstock particle size and 100 ml min−1 of nitrogen flow rate. Confirmation runs were conducted to validate the prediction at corresponding predicted conditions.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.