Issue |
E3S Web Conf.
Volume 289, 2021
International Conference of Young Scientists “Energy Systems Research 2021”
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 7 | |
Section | Information Technologies and Mathematical Modelling in Energy | |
DOI | https://doi.org/10.1051/e3sconf/202128903009 | |
Published online | 13 July 2021 |
The clique approach to identifying critical elements in gas transmission networks
Melentiev Energy Systems Institute, 130 Lermontov str., Irkutsk, Russia
* Corresponding author: seregavorobev@isem.irk.ru
We consider the gas transmission network operating on the territory of the Russian Federation. This network includes gas fields, gas consumers, nodal compressor stations, underground gas storages, which, depending on the given scenario of the system operation, can act as gas sources or gas consumers. The nodes are connected by means of gas pipelines. Because natural gas is used in heat and power engineering and electricity, the gas transmission network may be exposed to terrorist threats, and the actions of intruders may be directed both at gas production facilities and gas pipelines. To simulate intruders attacks, a model of the attacker-defender type was proposed. In this model, the defender, represented by the system operator, solves the problem of finding the maximum flow to meet the needs of gas consumers. The attacker, in turn, attempts to minimize the maximum flow in the gas transmission network by excluding either nodes or gas pipelines. Gas transmission networks in Russia and Europe are very extensive, ramified, and have many bridges and reserve gas pipelines. Therefore, to inflict maximum damage to the system, attacks on cliques, that is, on several interconnected objects, are modelled. The article presents the results of test calculations, in which we identify the most significant combinations of objects in the gas transmission network in terms of the potential threat from terrorist attacks.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.