Open Access
Issue
E3S Web Conf.
Volume 289, 2021
International Conference of Young Scientists “Energy Systems Research 2021”
Article Number 03009
Number of page(s) 7
Section Information Technologies and Mathematical Modelling in Energy
DOI https://doi.org/10.1051/e3sconf/202128903009
Published online 13 July 2021
  1. Pyatkova, N. I., Rabchuk, V. I., Senderov, S. M., Slavin, G. B., Cheltsov, M. B.: Energy security of Russia: problems and solutions. SB RAS, Novosibirsk (2011) [Google Scholar]
  2. Thompson, J. R., Frezza, D., Necioglu, B., Cohen, M. L., Hoffman, K., Rosfjord, K.: Interdependent Critical Infrastructure Model (ICIM): An agent-based model of power and water infrastructure. International Journal of Critical Infrastructure Protection 24, 144–165 (2019) [Google Scholar]
  3. Kai, L., Ming, W., Weihua, Z., Jinshan, W., Xiaoyong, Y.: Vulnerability analysis of an urban gas pipeline network considering pipeline-road dependency. International Journal of Critical Infrastructure Protection 23, 79–89 (2018) [Google Scholar]
  4. Tichy, L.: Energy Infrastructure as a Target of Terrorist Attacks from the Islamic State in Iraq and Syria. International Journal of Critical Infrastructure Protection (2019) [Google Scholar]
  5. Tsavdaroglou, M., Al-Jibouri, S. H. S., Bles, T., Halman, J. I. M.: Proposed methodology for risk analysis of interdependent critical infrastructures to extreme weather events. International Journal of Critical Infrastructure Protection 21, 57–71 (2018) [Google Scholar]
  6. Praks, P., Kopustinskas, V.: Node Importance Analysis of a Gas Transmission Network with Evaluation of a New Infrastructure by ProGasNet. In: CRITIS 2018, LNCS vol. 11260, pp. 3–16, (2019). 10.1007/978-3-030-05849-4_1 [Google Scholar]
  7. Zio, E.: Challenges in the vulnerability and risk analysis of critical infrastructures. Reliability Engineering & System Safety 152, 137–150 (2016) [Google Scholar]
  8. Zio, E.: Reliability engineering: Old problems and new challenges. Reliability Engineering & System Safety 94(2), 125–141 (2009) [Google Scholar]
  9. Apostolakis, G. E.: How useful is quantitative risk assessment?. Risk analysis 24(3), 515–520 (2004) [Google Scholar]
  10. Liu, H., Davidson, R. A., Apanasovich, T. V.: Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms. Reliability Engineering & System Safety 93(6), 897–912 (2008) [Google Scholar]
  11. Cuadra, L., Salcedo-Sanz, S., Del Ser, J., JimenezFernandez, S. Geem, Z. W.: A critical review of robustness in power grids using complex networks concepts. Energies 8(9), 9211–9265 (2015) [Google Scholar]
  12. Ouyang, M.: Review on modeling and simulation of interdependent critical infrastructure systems. Reliability engineering & System safety 121, 43–60 (2014) [Google Scholar]
  13. Wang, S., Hong, L., Chen, X.: Vulnerability analysis of interdependent infrastructure systems: A methodological framework. Physica A: Statistical Mechanics and its applications 391(11), 3323–3335 (2012) [Google Scholar]
  14. Johansson, J., Hassel, H.: Modelling, simulation and vulnerability analysis of interdependent technical infrastructures. In: Hokstad, P., Utne, I.B., Vatn, J. (eds.) Risk and Interdependencies in Critical Infrastructures: A Guideline for Analysis, pp. 49–66. London: Springer-Verlag (2012) [Google Scholar]
  15. Senderov, S., Edelev, A.: Formation of a List of Critical Facilities in the Gas Transportation System of Russia in Terms of Energy Security. Energy (2017). 10.1016/J.ENERGY.2017.11.063 [Google Scholar]
  16. Vorobev, S., Edelev, A.: Analysis of the importance of critical objects of the gas industry with the method of determining critical elements in networks of technical infrastructures. Management of Large-Scale System Development (MLSD), 2017 Tenth International Conference. IEEE (2017). 10.1109/MLSD.2017.8109707 [Google Scholar]
  17. Vorobev, S., Edelev, A., Smirnova, E.: Search of critically important objects of the gas industry with the method of determining critical elements in networks of technical infrastructures. Methodological Problems in Reliability Study of Large Energy Systems (RSES 2017). E3S Web Conf., vol. 25 (2017). 10.1051/e3sconf/20172501004 [Google Scholar]
  18. Senderov, S., Vorobev, S.: Approaches to the identification of critical facilities and critical combinations of facilities in the gas industry in terms of its operability. Reliability Engineering & System Safety 203(107046) (2020). 10.1016/j.ress.2020.107046 [Google Scholar]
  19. von Stackelberg, H.: The Theory of the Market Economy. William Hodge and Co., London, U.K. (1952) [Google Scholar]
  20. Smith, J.C., Lim, C. Algorithms for Network Interdiction and Fortification Games. In: Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds) Pareto Optimality, Game Theory And Equilibria. Springer Optimization and Its Applications, vol 17. Springer, New York, NY. (2008) 10.1007/978-0-387-77247-9_24 [Google Scholar]
  21. Brown, G., Carlyle, M., Salmeron, J., Wood, R.: Defending Critical Infrastructure. Interfaces 36(6), 530–544 (2006). 10.1287/inte.1060.0252 [Google Scholar]
  22. Salmeron, J., Wood K., Baldick, R.: Analysis of Electric Grid Security Under Terrorist Threat. Power Systems, IEEE Transactions, 19(2), 905–912 (2004). 912. 10.1109/TPWRS.2004.825888 [Google Scholar]
  23. Manshadi, S., Khodayar, M.: Resilient Operation of Multiple Energy Carrier Microgrids. IEEE Transactions on Smart Grid 6(5), 2283–2292 (2015). 10.1109/TSG.2015.2397318 [Google Scholar]
  24. Wang, C., Wei, W., Wang, J., Feng, L., Qiu, F., Correa-Posada, C., Mei, S.: Robust Defense Strategy for Gas-Electric Systems Against Malicious Attacks. IEEE Transactions on Power Systems 32(4), 2953–2965 (2017). 10.1109/TPWRS.2016.2628877 [Google Scholar]
  25. Wu, X., Conejo, A. J.: An Efficient Tri-Level Optimization Model for Electric Grid Defense Planning. IEEE Transactions on Power Systems 32(4), 2984–2994 (2017). 10.1109/TPWRS.2016.2628887 [Google Scholar]
  26. Apurba, K., Nandi, N., Hugh, R.M., Satish V.: Interdicting attack graphs to protect organizations from cyberattacks: A bi-level defender–attacker model. Computers and Operations Research 75, 118–131 (2016). 10.1016/j.cor.2016.05.005 [Google Scholar]
  27. Kam-Fung, C., Michael G.H. Bell.: (2019) Attacker– defender model against quantal response adversaries for cyber security in logistics management: An introductory study. European Journal of Operational Research 22(30) (2019). 10.1016/j.ejor.2019.10.019 [Google Scholar]
  28. Israeli, E., Wood, K.: Shortest-path network interdiction. Networks 40, 97–111 (2002) [Google Scholar]
  29. Ford, L.R., Fulkerson, D.R.: Flows in networks. Princeton university press, Princeton, New Jersey (1962) [Google Scholar]
  30. Korotaev, Yu., Margulov, R.: Extraction, preparation and transportation of natural gas and condensate, vol. 2. Nedra, Moscow (1984) [Google Scholar]
  31. Bomze, I.M., Budinich, M., Pardaloz, P.M., Pelillo, M.: The Maximum Clique Problem. Handbook of Combinatorial Optimization, pp. 1–74 (1999). 10.1007/978-1-4757-3023-4 [Google Scholar]
  32. AIMMS Homepage, https://www.aimms.com. Last accessed 8 Feb 2021 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.