Issue |
E3S Web Conf.
Volume 292, 2021
2021 2nd International Conference on New Energy Technology and Industrial Development (NETID 2021)
|
|
---|---|---|
Article Number | 01027 | |
Number of page(s) | 4 | |
Section | Energy Storage Saving and New Energy Technology Development | |
DOI | https://doi.org/10.1051/e3sconf/202129201027 | |
Published online | 09 September 2021 |
Stress sensitivity evaluation of ultra-low permeability sandstone reservoir and its influence on oilfield development
Yanchang Oilfield Limited Company, Yan’an Shaanxi 716000, China
* Corresponding author: mma0405@sina.com
Luohe ultra-low permeability sandstone reservoir is a hot block in Yanchang oilfield, which is a potential point for increasing production and reservoir. In view of the current situation that there is no unified stress sensitivity evaluation standard for ultra-low permeability sandstone in the study area, taking the ultra-low permeability sandstone in Luohe district as the research object, the stress sensitivity evaluation of ultra-low permeability sandstone is carried out by using experimental analysis as the main means. The results show that it is more accurate to evaluate porosity by using pore stress sensitivity coefficient instead of pore compressibility coefficient. With the increase of net overburden pressure, the porosity stress sensitivity decreases gradually; the permeability stress sensitivity is evaluated by variable confining pressure. With the increase of confining pressure, the permeability damage decreases. With the decrease of confining pressure, the permeability damage increases, but it can not recover to the original value, so the permeability damage is irreversible; in the low bottom hole pressure stage, stress sensitivity has a greater impact on oil well productivity, while in the high bottom hole pressure stage, stress sensitivity has a smaller impact on oil well productivity; advanced water injection can reduce the adverse effect of stress sensitivity on the development of ultra-low permeability sandstone and maximize the economic benefits. The research results clarify the method of stress sensitivity evaluation, and provide guidance for efficient water injection in the next step.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.