Issue |
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
|
|
---|---|---|
Article Number | 01031 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/202130901031 | |
Published online | 07 October 2021 |
Deep Neural Network Model for Proficient Crop Yield Prediction
Computer Science and Engineering, GRIET, Hyderabad, Telangana, India.
* Corresponding author: karunavenkatg@gmail.com
Crop yield forecasting mainly focus on the domain of agriculture research which has a great impact on making decisions like import-export, pricing and distribution of respective crops. Accurate predictions with well timed forecasts is very important and is a tremendously challenging task due to numerous complex factors. Mainly crops like wheat, rice, peas, pulses, sugarcane, tea, cotton, green houses etc. can be used for crop yield prediction. Climatic changes and unpredictability influence mainly on crop production and maintenance. Forecasting crop yield well before harvest time can help farmers for selling and storage. Agriculture deals with large datasets and knowledge process. Many techniques are there to predict the crop yield. Farmers are benefited commercially by these predictions. Factors such as Geno type, Environment, Climatic conditions and Soil types used in predicting the Yield. For predicting accurately we need to know the fundamental understanding and relationship between the interactive factors and the yield to reveal the relationships between the datasets which are comprehensive and powerful algorithms. Based on the study of various survey papers it has been found that in all the crop predictions, various deep learning, machine learning and ANN algorithms implemented to predict yield forecast and the results are analyzed.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.