Issue |
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
|
|
---|---|---|
Article Number | 01162 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/202130901162 | |
Published online | 07 October 2021 |
Convolutional and Spiking Neural Network Models for Crop Yield Forecasting
1 Professor, Computer Science and Engineering, GRIET, Hyderabad, Telangana, India.
2 PG Scholar, Computer Science and Engineering, GRIET, Hyderabad, Telangana, India.
3 Professor, Computer Science and Engineering, GRIET, Hyderabad, Telangana, India.
4 Assistant Professor, Computer Science and Engineering, GRIET, Hyderabad, Telangana, India.
* Corresponding author: karunavenkatg@gmail.com
Prediction of Crop yield focuses primarily on agriculture research which will have a significant effect on making decisions such as import-export, pricing and distribution of specific crops. Predicting accurately with well-timed forecasts is important, but it is a difficult task due to numerous complex factors. Mostly crops like wheat, rice, peas, pulses, sugar cane, tea, cotton, green houses, corn, and soybean can all be used to forecast crop yields. We considered corn dataset to predict the yield for 13 different states in United States. Crop development and progression are strongly affected by climatic changes and unpredictability. Predicting crop yield well before harvest time will support farmers for selling and storing their crops. Agriculture involves large datasets and knowledge processes. Factors such as Weather Components, Soil Components, Management practices, genotype and their interactions are used in predicting Corn Yield. Precise crop growth generally necessitates a complete overview of the functional correlations between yield and all these interactive variables, which necessitates the use of large datasets and complex algorithms to demonstrate. Various Machine Learning models, Deep Learning models, and Artificial Neural Network algorithms are used for predicting. Deep Neural Network Models such as Convolution Neural Networks (CNN), Spiking Neural Networks (SNN), and Recurrent Neural Networks (RNN) are used to assess corn yield. Integrating CNN, RNN and SNN models outperformed than individual model performance.
Key words: crop yield / spiking neural networks / prediction / recurrent neural networks
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.