Issue |
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
|
|
---|---|---|
Article Number | 01037 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/e3sconf/202130901037 | |
Published online | 07 October 2021 |
Sarcasm Discernment on Social Media Platform
Department of Information and Technology, Gokaraju Rangaraju Institution of Engineering and Technology, Telangana, India
* Corresponding author: nvgraju@griet.ac.in
Past studies in Sarcasm Detection mostly make use of Twitter datasets collected using hashtag-based supervision but such datasets are noisy in terms of labels and language. To overcome the limitations related to noise in Twitter datasets, this News Headlines dataset for Sarcasm Detection is collected from two news website. TheOnion aims at producing sarcastic versions of current events and we collected all the headlines from News in Brief and News in Photos categories (which are sarcastic). We collect real (and non-sarcastic) news headlines from Huff Post. Sarcasm Detection on social media platform. The dataset is collected from two news websites, theonion.com and huffingtonpost.com. Since news headlines are written by professionals in a formal manner, there are no spelling mistakes and informal usage. This reduces the sparsity and also increases the chance of finding pre-trained embeddings. Furthermore, since the sole purpose of TheOnion is to publish sarcastic news, we get high-quality labels with much less noise as compared to Twitter datasets. Unlike tweets that reply to other tweets, the news headlines obtained are self-contained.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.