Issue |
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
|
|
---|---|---|
Article Number | 01081 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/202130901081 | |
Published online | 07 October 2021 |
On rheological, mechanical, thermal, wear and morphological properties of melamine formaldehyde reinforced recycled ABS for sustainable manufacturing
1 Department of Mechanical Engineering, National Institute of Technology, Uttarakhand, Srinagar (Garhwal), Uttarakhand. 246174
2 Department of Mechanical Engineering, NITTTR Chandigarh - 160019, India
* Correspondingauthor:brar.gurinder@gmail.com
This study outline the procedure of filament fabrication for fused deposition modelling (FDM), based upon rheological, mechanical, thermal, wear and morphological characterization as a case study of acrylonitrile butadiene styrene (ABS) - melamine formaldehyde (MF) composite. It has been ascertained that with increase in proportion of MF in ABS, viscosity is improved and melt flow index (MFI) is reduced significantly. As regards to the wear behavior is concerned it has been observed that ABS-MF (12.5 wt.%) composite has shown minimum weight loss and porosity. For the mechanical properties of the composite, experimental results show increased brittleness of the samples with addition of MF reinforcement. The thermal stability analysis was performed using differential scanning calorimetry (DSC) for virgin ABS and samples having 12.5% MF in ABS and results show the increased heat capacity of the material with increase in MF percentage. Further for sustainability analysis (based upon thermal stability), matrix of ABS-MF12.5% was subjected to three repeated thermal (heating-cooling) cycles and it has been ascertained that no significant loss was noticed in heat capacity of recycled composite matrix. The results are also supported by Fourier transform infrared spectroscopy (FTIR) analysis. Overall the results of the rheological, mechanical, wear, morphological and thermal properties suggested that 12.5% proportion of MF can be reinforced into selected grade of ABS thermoplastic for 3D printing as a sustainable solution.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.