Issue |
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
|
|
---|---|---|
Article Number | 01112 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/202130901112 | |
Published online | 07 October 2021 |
Studies on effect of sugarcane bagasse fibre on mechanical properties and workability of low calcium fly ash and slag based geopolymer concrete
1 Professor, Département of Civil Engineering, GRIET, Hyderabad, India
2 PG Student,, Département of Civil Engineering, GRIET, Hyderabad, India.
3 Professor, Département of Civil Engineering, JNTU, Hyderabad, India.
Individuals from the group of inorganic polymers are known as geopolymers. The geopolymer material's compound organisation is similar to that of typical zeolitic materials, however the microstructure is undefined rather than translucent. The polymerisation interaction includes a considerably quick substance response under antacid condition on Si-Al minerals and that meets the basic properties of concrete as well as falls under classification of manageability. Utilization of various fibres like steel, glass, sugarcane bagasse etc, significantly influences fresh and hardened properties of concrete. Sugarcane bagasse fibre is a by-product from sugar industries and can be used as a fibre in concrete. The target of this paper is to study an effect of sugarcane bagasse fibre on mechanical properties such as compressive, tensile and flexural sgength and also the workability of low calcium fly ash (Class-F) and slag based geopolymer concrete of G40 grade which is équivalent to M40.. Sugarcane baggase ash fibre has been used for both the concencrte G40 and M40 as 0.5%,1%,1.5%,2%. All the samples were casted and oven cured at 60o for 24 hours after one day rest period and remaining days cured in an ambient temperature, then tested on 3rd, 7th and 28th day to assess the mechanical properties, such as Compressive, Tensile, and Flexure strength. The results were compared among controlled concrete (CC), controlled concrete with sugarcane bagasse fibre (CCF), geopolymer concrete (GPC) and geopolymer concrete with sugarcane bagasse fibre (GPCF). The results revealed that with addition of SCBF, the mechanical properties have been enhanced significantly.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.