Open Access
Issue
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
Article Number 01162
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202130901162
Published online 07 October 2021
  1. Khaki, Saeed & Wang, Lizhi. (2019). Crop Yield Prediction Using Deep Neural Networks. Frontiers in Plant Science.10.10.3389/fpls.2019.00621. [Google Scholar]
  2. Syngenta (2021). Syngenta Crop Challenge In Analytics. Available online at: https://www.ideaconnection.com/syngenta-crop-challenge/challenge.php/ [Google Scholar]
  3. Elizondo, David & McClendon, R.W. (1994). Neural Network Models for Predicting Flowering and Physiological Maturity of Soybean. Transactions of the American Society of Agricultural Engineers. 37. 981–988. 10.13031/2013.28168. [Google Scholar]
  4. Matsumura, K. & Gaitan, Carlos & Sugimoto, K. & Cannon, Alex & Hsieh, William. (2015). Maize yield forecasting by linear regression and artificial neural networks in Jilin, China.1-12. [Google Scholar]
  5. PayalGulati, Suman Kumar Jha, 2020, Efficient Crop Yield Prediction in India using Machine Learning Techniques, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT) ENCADEMS – 2020 (Volume 8 – Issue 10), [Google Scholar]
  6. Barbosa, Alexandre & Trevisan, Rodrigo & Hovakimyan, Naira & Martin, Nicolas. (2020). Modeling yield response to crop management using convolutional neural networks. Computers and Electronics in Agriculture. 170. 105197. 10.1016/j.compag.2019.105197. [Google Scholar]
  7. Baum, Mitch & Archontoulis, S. &Licht, Mark. (2018). Planting Date, Hybrid Maturity, and Weather Effects on Maize Yield and Crop Stage. Agronomy Journal.111. 10.2134/agronj2018.04.0297. [Google Scholar]
  8. AndreasKamilaris, Francesc X. Prenafeta-Boldú, Deep learning in agriculture: A survey, Computers and Electronics in Agriculture, https://doi.org/10.1016/j.compag.2018.02.016. (https://www.sciencedirect.com/science/article/pii/S0168169917308803) [Google Scholar]
  9. Khaki, Saeed& Wang, Lizhi&Archontoulis, Sotirios. (2019). A CNN-RNN Framework for Crop Yield Prediction. [Google Scholar]
  10. Shahhosseini, Mohsen & Hu, Guiping& Huber, Isaiah & Archontoulis, Sotirios. (2021). Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Scientific Reports. 11. 10.1038/s41598-020-80820-1. [PubMed] [Google Scholar]
  11. Mulla, Sadiq&Quadri, S..(2020). Crop-yield and Price Forecasting using Machine Learning.TheInternational journal of analytical and experimental modal analysis. XII. 1731-1737. [Google Scholar]
  12. T. Siddique, D. Barua, Z. Ferdous and A. Chakrabarty, “Automated farming prediction, “ 2017 Intelligent Systems Conference (IntelliSys), 2017, pp. 757–763, doi: 10.1109/IntelliSys.2017.8324214. [Google Scholar]
  13. Dharani, M &Thamilselvan, R & Natesan, P & Kalaivaani, PCD &Santhoshkumar, S. (2021). Review on Crop Prediction Using Deep Learning Techniques. Journal of Physics: Conference Series. 1767. 012026. 10.1088/1742-6596/1767/1/012026. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.